Skip to main content
Log in

New Results on Exponential Stability and Passivity Analysis of Delayed Switched Systems with Nonlinear Perturbations

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, we investigate the problem of exponential stability and passivity analysis of a class of switched systems with interval time-varying delays and nonlinear perturbations. By constructing an improved Lyapunov–Krasovskii functional combining with novel refined Jensen-based inequalities, some improved sufficient conditions for exponential stability are proposed for a class of switching signals with average dwell time. Moreover, a new sufficient condition for passivity analysis of switched continuous-time systems with an interval time-varying delay is also derived. These conditions are delay dependent and are given in the form of linear matrix inequalities, which therefore can be efficiently solved by existing convex algorithms. Lastly, four examples are provided to demonstrate the effectiveness of our results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. P. Balasubramaniam, G. Nagamani, A delay decomposition approach to delay-dependent passivity analysis for interval neural networks with time-varying delay. Neurocomputing 74, 1646–1653 (2011)

    Article  Google Scholar 

  2. Y. Chen, H.B. Zou, R.Q. Lu, A. Xue, Finite-time stability and dynamic output feedback stabilization of stochastic systems. Circuits Syst. Signal Process. 33(1), 53–69 (2014)

    Article  MathSciNet  Google Scholar 

  3. L. Ding, Y. He, M. Wu, Z. Zhang, A novel delay partitioning method for stability analysis of interval time-varying delay systems. J. Franklin Inst. 354(2), 1209–1219 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  4. Y. Dong, J. Liu, S. Mei, M. Li, Stabilization for switched nonlinear time-delay systems. Nonlinear Anal. Hybrid Syst. 5, 78–88 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. E. Fridman, U. Shaked, On delay-dependent passivity. IEEE Trans. Autom. Contr. 47(4), 664–669 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. J.C. Geromel, P. Colaneri, P. Bolzern, Passivity of switched linear systems: analysis and control design. Syst. Control Lett. 61, 549–554 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. H. Ghadiri, M.R. Jahed-Motlagh, LMI-based criterion for the robust guaranteed cost control of uncertain switched neutral systems with time-varying mixed delays and nonlinear perturbations by dynamic output feedback. Complexity 21, 555–578 (2016)

    Article  MathSciNet  Google Scholar 

  8. K. Gu, V.L. Kharitonov, Stability of Time-Delay Systems (Birkhauser, Berlin, 2003)

    Book  MATH  Google Scholar 

  9. L.V. Hien, H. Trinh, Refined Jensen-based inequality approach to stability analysis of time-delays systems. IET Control Theory Appl. 9(14), 2188–2194 (2015)

    Article  MathSciNet  Google Scholar 

  10. S. Kim, S.A. Campbell, X.Z. Liu, Stability of a class of linear switching systems with time delay. IEEE Trans. Circuits Syst. 53(2), 384–393 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. R. Krishnasamy, P. Balasubramaniam, A descriptor system approach to the delay-dependent exponential stability analysis for switched neutral systems with nonlinear perturbations. Nonlinear Anal. Hybrid Syst. 15, 23–36 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. O.M. Kwon, S.M. Lee, J.H. Park, On passivity criteria of uncertain neural networks with time-varying delays. Nonlinear Dyn. 67, 1261–1271 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. O.M. Kwon, M.J. Park, J.H. Park, S.M. Lee, Improvement on the feasible region of \(H_{\infty }\) performance and stability for systems with interval time-varying delays via augmented Lyapunov–Krasovskii functional. J. Franklin Inst. 353, 4979–5000 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. T.H. Lee, J.H. Park, S. Xu, Relaxed conditions for stability of time-varying delay systems. Automatica 75, 11–15 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. H. Li, H. Gao, P. Shi, New passivity analysis for neural networks with discrete and distributed delays. IEEE Trans. Neural Netw. 21(11), 153–163 (2010)

    Google Scholar 

  16. C. Li, X. Liao, Passivity analysis of neural network with time delay. IEEE Trans. Circuits Syst. II 52(8), 471–475 (2005)

    Article  MathSciNet  Google Scholar 

  17. C. Li, H. Zhang, Passivity and passification of fuzzy systems with time delays. Comput. Math. Appl. 52, 1067–1078 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. O. Li, Q. Zhang, N. Yi, Y. Yuan, Robust passivity control for uncertain time-delay singular systems. IEEE Trans. Circuits Syst. I 56(3), 653–663 (2009)

    Article  MathSciNet  Google Scholar 

  19. J. Li, J. Zhao, Passivity and feedback passification of switched discrete-time linear systems. Syst. Control Lett. 62, 1073–1081 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. S. Li, Z.R. Xiang, H.R. Karimi, Positive \(L_1\) observer design for positive switched systems. Circuits Syst. Signal Process. 33(7), 2085–2106 (2014)

    Article  MathSciNet  Google Scholar 

  21. J. Lian, P. Shi, Z. Feng, Passivity and passification for a class of uncertain switched stochastic time-delay systems. IEEE Trans. Cybern. 43(1), 3–13 (2013)

    Article  Google Scholar 

  22. J. Lian, J. Wang, Passivity of switched recurrent neural networks with time-varying delays. IEEE Trans. Neural Netw. Learn. Syst. 26(2), 357–366 (2015)

    Article  MathSciNet  Google Scholar 

  23. D. Liberzon, Switching in Systems and Control (Birkhauser, Boston, 2003)

    Book  MATH  Google Scholar 

  24. C.H. Lien, K.W. Yu, Y.J. Chung, H.C. Chang, L.Y. Chung, J.D. Chen, Switching signal design for global exponential stability of uncertain switched nonlinear systems with time-varying delay. Nonlinear Anal. Hybrid Syst. 5, 10–19 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. C.H. Lien, K.W. Yu, Y.J. Chung, Y.F. Lin, L.Y. Chung, J.D. Chen, Exponential stability analysis for uncertain switched neutral systems with interval time-varying state delay. Nonlinear Anal. Hybrid Syst. 3, 334–342 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. C.H. Lien, K.W. Yu, J.D. Chen, L.Y. Chung, Global exponential stability of switched systems with interval time-varying delays and multiple non-linearities via simple switching signal design. IMA J. Math. Control Inf. 33(4), 1135–1155 (2016)

    Article  MathSciNet  Google Scholar 

  27. T. Liu, B. Wu, L. Liu, Y.E. Wang, Finite-time stability of discrete switched singular positive systems. Circuits Syst. Signal Process. 36(6), 2243–2255 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  28. Y. Liu, J.H. Park, B.Z. Guo, Results on stability of linear systems with time varying delay. IET Control Theory Appl. 11(6), 129–134 (2017)

    Article  MathSciNet  Google Scholar 

  29. X. Lou, B. Cui, Passivity analysis of integro-differential neural networks with time-varying delays. Neurocomputing 70, 1071–1078 (2007)

    Article  Google Scholar 

  30. M.S. Mahmoud, A. Ismail, Passivity and passification of time-delay systems. J. Math. Anal. Appl. 292, 247–258 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  31. M.S. Mahmoud, Resilient Control of Uncertain Dynamical Systems (Springer, Berlin, 2004)

    Book  MATH  Google Scholar 

  32. K. Mathiyalagan, T.H. Lee, J.H. Park, R. Sakthivel, Robust passivity based resilient \(H_{\infty }\) control for networked control systems with random gain fluctuations. Int. J. Robust Nonlinear Control 26(3), 426–444 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  33. K. Mathiyalagan, J.H. Park, R. Sakthivel, New results on passivity-based \(H_{\infty }\) control for networked cascade control systems with application to power plant boiler-turbine system. Nonlinear Anal. Hybrid Syst. 17, 56–69 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  34. Z. Meng, Z. Xiang, Passivity analysis of memristor-based recurrent neural networks with mixed time-varying delays. Neurocomputing 165, 270–279 (2015)

    Article  Google Scholar 

  35. S.I. Niculescu, R. Lozano, On the passivity of linear delay systems. IEEE Trans. Automat. Contr. 46(3), 460–464 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  36. P.G. Park, J.W. Ko, C. Jeong, Reciprocally convex approach to stability of systems with time-varying delays. Automatica 47, 235–238 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  37. P.G. Park, W.I. Lee, S.Y. Lee, Auxiliary function-based integral inequalities for quadratic functions and their applications to time-delay systems. J. Franklin Inst. 352, 1378–1396 (2015)

    Article  MathSciNet  Google Scholar 

  38. V.N. Phat, T. Botmart, P. Niamsup, Switching design for exponential stability of a class on nonlinear hybrid time-delay systems. Nonlinear Anal. Hybrid Syst. 3, 1–10 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  39. V.N. Phat, K. Ratchagit, Stability and stabilization of switched linear discrete-time systems with interval time-varying delay. Nonlinear Anal. Hybrid Syst. 5, 605–612 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  40. Y. Qian, Z. Xiang, H.R. Karimi, Disturbance tolerance and rejection of discrete switched systems with time-varying delay and saturating actuator. Nonlinear Anal. Hybrid Syst. 16, 81–92 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  41. R.Q. Shi, X.M. Tian, X.D. Zhao, X.L. Zheng, Stability and \(L_1\)-gain analysis for switched delay positive systems with stable and unstable subsystems. Circuits Syst. Signal Process. 34(5), 1683–1696 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  42. A. Seuret, F. Gouaisbaut, Wirtinger-based integral inequality: application to time-delay systems. Automatica 49, 2860–2866 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  43. A. Seuret, F. Gouaisbaut, E. Fridman, Stability of systems with fast-varying delay using improved Wirtingers inequality. in IEEE Conference on Decision and Control, Florence, Italy, pp. 235–238, 2013

  44. Z. Sun, S.S. Ge, Switched Linear Systems: Control and Design (Springer, London, 2005)

    Book  MATH  Google Scholar 

  45. J. Sun, G.P. Liu, J. Chen, D. Rees, Improved delay-range-dependent stability criteria for linear systems with time-varying delays. Automatica 46, 466–470 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  46. X.M. Sun, W. Wang, G.P. Liu, J. Zhao, Stability analysis for linear switched systems with time-varying delay. IEEE Trans. Syst. Man Cybern. (B) 38(2), 528–533 (2008)

    Article  Google Scholar 

  47. X.M. Sun, J. Zhao, D.J. Hill, Stability and \(L_2\)-gain analysis for switched delay systems: a delay-dependent method. Automatica 42(10), 121–125 (2006)

    Article  MathSciNet  Google Scholar 

  48. Q. Song, J. Cao, Passivity of uncertain neural networks with both leakage delay and time-varying delay. Nonlinear Dyn. 67, 1695–1707 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  49. Q. Song, Z. Wang, J. Liang, Analysis on passivity and passification of T-S fuzzy systems with time-varying delays. J. Intell. Fuzzy Syst. 24, 21–30 (2013)

    MathSciNet  MATH  Google Scholar 

  50. M.V. Thuan, H. Trinh, L.V. Hien, New inequality-based approach to passivity analysis of neural networks with interval time-varying delay. Neurocomputing 194, 301–307 (2016)

    Article  Google Scholar 

  51. Y.E. Wang, X.M. Sun, J. Zhao, Stabilization of a class of switched Stochastic systems with time delays under asynchronous switching. Circuits Syst. Signal Process. 32(1), 347–360 (2013)

    Article  MathSciNet  Google Scholar 

  52. S. Wen, Z. Zeng, New criteria of passivity analysis for fuzzy time-delay systems with parameter uncertainties. IEEE Trans. Fuzzy Syst. 23(6), 2284–2301 (2015)

    Article  Google Scholar 

  53. Z.G. Wu, J.H. Park, H. Su, J. Chu, Delay-dependent passivity for singular Markov jump systems with time delays. Commun. Nonlinear Sci. Numer. Simul. 18(3), 669–681 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  54. L. Wu, W. Zheng, Passivity-based sliding mode control of uncertain singular time-delay systems. Automatica 45(9), 653–663 (2009)

    Article  MathSciNet  Google Scholar 

  55. L. Wu, W. Zheng, Reliable passivity and passification for singular Markovian systems. IMA J. Math. Control Inf. 30(2), 155–168 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  56. S. Xu, W.X. Zheng, Y. Zou, Passivity analysis of neural networks with time-varying delays. IEEE Trans. Circuits Syst. II 56(4), 325–329 (2009)

    Article  Google Scholar 

  57. H.B. Zeng, J.H. Park, H. Shen, Robust passivity analysis of neural networks with discrete and distributed delays. Neurocomputing 149, 1092–1097 (2015)

    Article  Google Scholar 

  58. H.B. Zeng, Y. He, M. Wu, J. She, Free-matrix-based integral inequality for stability analysis of systems with time-varying delay. IEEE Trans. Autom. Contr. 60, 2768–2772 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  59. G.S. Zhai, B. Hu, K. Yasuda, A. Michel, Disturbance attenuation properties of time-controlled switched systems. J. Franklin Inst. 338, 765–779 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  60. J.F. Zhang, Z.Z. Han, J. Huang, Stabilization of discrete-time positive switched systems. Circuits Syst. Signal Process. 32(3), 1129–1145 (2013)

    Article  MathSciNet  Google Scholar 

  61. Z. Zheng, X. Su, L. Wu, Dynamic output feedback control of switched repeated scalar nonlinear systems. Circuits Syst. Signal Process. (2016). doi:10.1007/s00034-016-0472-7

  62. Z. Zhang, S. Mou, J. Lam, H. Gao, New passivity criteria for neural networks with time-varying delay. Neural Netw. 22, 864–868 (2009)

    Article  MATH  Google Scholar 

  63. L. Zhang, S. Wang, H.R. Karimi, A. Jasra, Robust finite-time control of switched linear systems and applications to a class of servomechanism systems. IEEE Trans. Mechatron. 20(5), 2476–2485 (2015)

    Article  Google Scholar 

  64. B. Zhang, S. Xu, J. Lam, Relaxed passivity conditions for neural networks with time-varying delays. Neurocomputing 142, 299–306 (2014)

    Article  Google Scholar 

  65. D. Zhang, L. Yu, Exponential stability analysis for neutral switched systems with interval time-varying mixed delays and nonlinear perturbations. Nonlinear Anal. Hybrid Syst. 6, 775–786 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  66. X.Q. Zhao, J. Zhao, Output feedback passification of switched continuous-time linear systems subject to saturating actuators. Circuits Syst. Signal Process. 34, 1343–1361 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  67. G.X. Zhong, G.H. Yang, Passivity and output feedback passification of switched continuous-time systems with a dwell time constraint. J. Process Control 32, 16–24 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to thank the editor(s) and anonymous reviewers for their constructive comments which helped to improve the present paper. This work was partially supported by the Ministry of Education and Training of Vietnam.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mai Viet Thuan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thuan, M.V., Huong, D.C. New Results on Exponential Stability and Passivity Analysis of Delayed Switched Systems with Nonlinear Perturbations. Circuits Syst Signal Process 37, 569–592 (2018). https://doi.org/10.1007/s00034-017-0565-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-017-0565-y

Keywords

Navigation