Skip to main content
Log in

Algorithm for the Detection of Changes in the Dynamics of a Multivariate Time Series via Sliced Cross-Bispectrum

  • Short Paper
  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, we propose a novel algorithm for the detection changes in the spatio-spectral dynamics of a multivariate time series based on a sliced cross-bispectrum. The singular value decomposition is performed on the matrix of the sliced cross-bispectrum at every frequency of the bandwidth, and a 2D spectrum of the eigenvalues is obtained. The changes in the dynamics are translated into differences between the reference and current values of the 2D eigenvalue spectrum. Hellinger divergence as the measure of the distance between eigenvalue spectrum matrices is used. The performance of the proposed approach is tested on model data and applied to multi-channel electroencephalogram recordings from epilepsy patients to detect ictal states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. T.N. Alotaiby, S.A. Alshebeili, T. Alshawi, I. Ahmad, F.E.Abd El-Samie, EEG seizure detection and prediction algorithms: a survey. Adv. Signal Process. 183, 1–21 (2014)

    Google Scholar 

  2. M. Basseville, Divergence measures for statistical data processing—an annotated bibliography. Signal Process. 93, 621–633 (2013)

    Article  Google Scholar 

  3. F. Chella, L. Marzetti, V. Pizzella, F. Zappasodi, G. Nolte, Third order spectral analysis robust to mixing artifacts for mapping cross-frequency interactions in EEG/MEG. Neuroimage 91, 146–161 (2014)

    Article  Google Scholar 

  4. F. Chella, V. Pizzella, F. Zappasodi, G. Nolte, L. Marzetti, Bispectral pairwise interacting source analysis for identifying systems of cross-frequency interacting brain sources from electroencephalographic or magnetoencephalographic signals. Phys. Rev. E 93, 052420 (2016)

    Article  Google Scholar 

  5. K.Ch. Chua, V. Chandran, U.R. Acharya, C.M. Lim, Application of higher order statistics/spectra in biomedical signals—a review. Med. Eng. Phys. 32, 679–689 (2010)

  6. K.Ch. Chua, V. Chandran, U.R. Acharya, C.M. Lim, Application of higher order spectra to identify epileptic EEG. J. Med. Syst. 35, 1563–1571 (2011)

  7. A. Cichocki, R. Zdunek, A.H. Phan, S. Amari, Nonnegative Matrix and Tensor Factorizations: Applications to Exploratory Multi-way Data Analysis and Blind Source Separation (Wiley, New York, 2009)

    Book  Google Scholar 

  8. W.B. Collis, P.R. White, J.K. Hammond, Higher-order spectra: the bispectrum and trispectrum. Mech. Syst. Signal Process. 12(3), 375–394 (1998)

    Article  Google Scholar 

  9. L. Fang, H. Zhao, P. Wang, M. Yu, J. Yan, W. Cheng, P. Chen, Feature selection method based on mutual information and class separability for dimension reduction in multidimensional time series for clinical data. Biomed. Signal Process. Control 21, 82–89 (2015)

    Article  Google Scholar 

  10. M. Ghil, M.R. Allen, M.D. Dettinger, K. Ide, D. Kondrashov, M.E. Mann et al., Advanced spectral methods for climatic time series. Rev. Geophys. 40, 1–41 (2002)

    Article  Google Scholar 

  11. A. Groth, M. Ghil, Multivariate singular spectrum analysis and the road to phase synchronization. Phys. Rev. E 84, 036206 (2011)

    Article  Google Scholar 

  12. K. Lehnertz, G. Ansmann, S. Bialonski, H. Dickten, Ch. Geier, S. Porz, Evolving networks in the human epileptic brain. Phys. D 267, 7–15 (2014)

    Article  MathSciNet  Google Scholar 

  13. W. Lian, R. Talmon, H. Zaveri, L. Carin, R. Coifman, Multivariate time-series analysis and diffusion maps. Signal Process. 116, 13–28 (2015)

    Article  Google Scholar 

  14. H. Ling, H. Zhiming, Application of bispectral analysis in the nonlinear systems, in International Proceedings of Computer Science & Information Technology, vol. 46 (2012), pp. 107–111

  15. C.L. Nikias, J.M. Mendel, Signal processing with higher-order spectra. IEEE Signal Process. Mag. 10(3), 10–37 (1993)

    Article  Google Scholar 

  16. G.V. Osipov, A.S. Pikovsky, M.G. Rosenblum, J. Kurths, Phase synchronization effects in a lattice of nonidentical Roessler oscillators. Phys. Rev. E 55, 2353–2361 (1997)

    Article  MathSciNet  Google Scholar 

  17. T.E. Özkurt, Estimation of nonlinear neural source interactions via sliced bicoherence. Biomed. Signal Process. Control 30, 43–52 (2016)

    Article  Google Scholar 

  18. E. Pereda, R.Q. Quiroga, J. Bhattacharya, Nonlinear multivariate analysis of neurophysiological signals. Prog. Neurobiol. 77, 1–37 (2005)

    Article  Google Scholar 

  19. C. Pradhan, S.K. Jena, S.R. Nadar, N. Pradhan, Higher-order spectrum in understanding nonlinearity in EEG rhythms. Comput. Math. Methods Med. 2012, 1–8 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. D. Sherman, N. Zhang, S. Garg, N.V. Thakor, M.A. Mirski, M.A. White, J. Melvin, M.J. Hinich, Detection of nonlinear interactions of EEG alpha waves in the brain by a new coherence measure and its application to epilepsy and anti-epileptic drug therapy. Int. J. Neural Syst. 21(2), 115–126 (2011)

    Article  Google Scholar 

  21. D.S. Stoffer, D.E. Tyler, D.A. Wendt, The spectral envelope and its applications. Stat. Sci. 15(3), 224–253 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  22. A. Swami, J. Mendel, C. Nikias, Higher-Order Spectral Analysis Toolbox for Use with Matlab (Mathworks, Natick, 1995)

    Google Scholar 

  23. I.V. Sysoev, M.V. Sysoeva, Detecting changes in coupling with Granger causality method from time series with fast transient processes. Phys. D 309, 9–19 (2015)

    Article  MATH  Google Scholar 

  24. R. Talmon, S. Mallat, H. Zaveri, R.R. Coifman, Manifold learning for latent variable inference in dynamical systems. IEEE Trans. Signal Process. 63(15), 3843–3856 (2015)

    Article  MathSciNet  Google Scholar 

  25. L. Uldry, therapeutic strategies for the treatment of atrial fibrillation: new insights from biophysical modeling and signal processing (2011), http://infoscience.epfl.ch/record/166127/files/EPFL_TH5107.pdf. Accessed 30 Sept 2016

  26. G. Valenzaa, L. Citia, A. Lanataa, E.P. Scilingoa, R. Barbieri, Revealing real-time emotional responses: a personalized assessment based on heartbeat dynamics. Sci. Rep. 4, 1–13 (2014)

    Google Scholar 

  27. S.M. Zhou, J.Q. Gan, F. Sepulveda, Classifying mental tasks based on features of higher-order statistics from EEG signals in brain-computer interface. Inf. Sci. 178, 1629–1640 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazimieras Pukenas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pukenas, K. Algorithm for the Detection of Changes in the Dynamics of a Multivariate Time Series via Sliced Cross-Bispectrum. Circuits Syst Signal Process 37, 873–882 (2018). https://doi.org/10.1007/s00034-017-0577-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-017-0577-7

Keywords

Navigation