Skip to main content
Log in

Robust Centralized and Weighted Measurement Fusion Kalman Predictors with Multiplicative Noises, Uncertain Noise Variances, and Missing Measurements

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

For multisensor uncertain systems with mixed uncertainties, including multiplicative noises in state and process noise transition matrices, uncertain-variance multiplicative and additive white noises, and missing measurements, this paper addresses the problem of designing robust centralized fusion (CF) and weighted measurement fusion (WMF) Kalman predictors. By introducing fictitious noises, the system under study is converted into a system with only uncertain noise variances. According to the minimax robust estimation principle, which is based on the worst-case system with conservative upper bounds of uncertain noise variances, the robust CF and WMF time-varying Kalman predictors are presented in a unified framework. Using the Lyapunov equation, the robustness of these predictors is proven in the sense that the actual prediction error variances are guaranteed to have the corresponding minimal upper bounds for all admissible uncertainties. Using an information filter, they are proven to have the same robust and actual accuracies. The complexity analysis shows that when the number of sensors is larger, the WMF algorithm more significantly reduces the computational burden than the CF algorithm. The corresponding robust fused steady-state Kalman predictors are also presented. The three modes of convergence in a realization among the time-varying and steady-state robust fused Kalman predictors are proposed and proven using the dynamic error system analysis method. Two simulation examples, autoregressive moving average signal processing and an uninterruptible power system, demonstrate the effectiveness of the proposed methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. B.D.O. Anderson, J.B. Moore, Optimal Filtering (Prentice Hall, Englewood Cliffs, 1979)

    MATH  Google Scholar 

  2. B. Chen, G.Q. Hu, D.W.C. Ho, W.A. Zhang, L. Yu, Distributed robust fusion estimation with application to state monitoring systems. IEEE Trans. Syst. Man Cybern. Syst. (2016). doi:10.1109/TSMC.2016.2558103

  3. B. Chen, L. Yu, W.A. Zhang, A.D. Liu, Robust information fusion estimator for multiple delay-tolerant sensors with different failure rates. IEEE Trans. Circuits Syst. I Regul. Pap. 60(2), 401–414 (2013)

    Article  MathSciNet  Google Scholar 

  4. Y.P. Cheng, Matrix Theory (Northwestern Polytechnical University Press, Xi’an, 2001)

    Google Scholar 

  5. C.K. Chui, G. Chen, Kalman Filtering: With Real-Time Applications, 3rd edn. (Springer, Berlin, 1998)

    MATH  Google Scholar 

  6. Z.L. Deng, Y. Gao, C.B. Li, G. Hao, Self-tuning decoupled information fusion Wiener state component filters and their convergence. Automatica 44(3), 685–695 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Z.L. Deng, Y. Gao, L. Mao, Y. Li, G. Hao, New approach to information fusion steady-state Kalman filtering. Automatica 41(10), 1695–1707 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Z.L. Deng, P. Zhang, W.J. Qi, Y. Gao, J.F. Liu, The accuracy comparison of multisensor covariance intersection fuser and three weighting fusers. Inf. Fusion 14(2), 177–185 (2013)

    Article  Google Scholar 

  9. Y. Ebihara, T. Hagivara, A dilated LMI approach to robust performance analysis of linear time-invariant uncertain systems. Automatica 41(11), 1933–1941 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Q. Gan, C.J. Harris, Comparison of two measurement fusion methods for Kalman filter based multisensory data fusion. IEEE Trans. Aerosp. Electron. Syst. 37(1), 273–280 (2001)

    Article  Google Scholar 

  11. Y. Gao, C.J. Ran, X.J. Sun, Z.L. Deng, Optimal and self-tuning weighted measurement fusion Kalman filter and their asymptotic global optimality. Int. J. Adapt. Control Signal Process. 24(11), 982–1004 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. T. Kailath, A.H. Sayed, B. Hassibi, Linear Estimation (Prentice Hall, Englewood Cliffs, 2000)

    MATH  Google Scholar 

  13. W.L.D. Koning, Optimal estimation of linear discrete-time systems with stochastic parameters. Automatica 20(1), 113–115 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  14. V.S. Kouikoglou, Y.A. Phillis, Trace bounds on the covariances of continuous-time systems with multiplicative noise. IEEE Trans. Automat. Control 38(1), 138–142 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  15. F.L. Lewis, L.H. Xie, D. Popa, Optimal and Robust Estimation, 2nd edn. (CRC Press, New York, 2008)

    MATH  Google Scholar 

  16. X.L. Li, Y.M. Zhu, J. Wang, C.Z. Han, Optimal linear estimation fusion-Part I: unified fusion rules. IEEE Trans. Inf. Theory 49(9), 2192–2208 (2003)

    Article  MATH  Google Scholar 

  17. F.B. Li, P. Shi, C.C. Lim, L.G. Wu, Fault detection filtering for nonhomogeneous Markovian jump systems via fuzzy approach. IEEE Trans. Fuzzy Syst. (2016). doi:10.1109/TFUZZ.2016.2641022

    Google Scholar 

  18. M.E. Liggins, D.L. Hall, J. Llinas, Handbook of Multisensor Data Fusion: Theory and Practice, 2nd edn. (CRC Press, New York, 2009)

    Google Scholar 

  19. W. Liu, Optimal estimation for discrete-time linear systems in the presence of multiplicative and time-correlated additive measurement noises. IEEE Trans. Signal Process. 63(12), 4583–4593 (2015)

    Article  MathSciNet  Google Scholar 

  20. W. Liu, G.Z. Hu, State estimation for discrete-time Markov jump linear systems with multiplicative noises and delayed mode measurements. Digit. Signal Process. 30, 27–36 (2014)

    Article  MathSciNet  Google Scholar 

  21. G.M. Liu, W.Z. Su, Survey of linear discrete-time stochastic controls systems with multiplicative noises. Control Theory Appl. 30(8), 929–946 (2013)

    MATH  Google Scholar 

  22. W.Q. Liu, X.M. Wang, Z.L. Deng, Robust weighted fusion steady-state white noise deconvolution smoothers for multisensor systems with uncertain noise variances. Signal Process. 122, 98–114 (2016)

    Article  Google Scholar 

  23. W.Q. Liu, X.M. Wang, Z.L. Deng, Robust weighted fusion Kalman estimators for multisensor systems with multiplicative noises and uncertain-covariances linearly correlated white noises. Int. J. Robust Nonlinear Control (2016). doi:10.1002/rnc.3649

    Article  MATH  Google Scholar 

  24. W.Q. Liu, X.M. Wang, Z.L. Deng, Robust centralized and weighted measurement fusion Kalman estimators for multisensor systems with multiplicative and uncertain-covariance linearly correlated white noises. J. Franklin Inst. 354(4), 1992–2031 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  25. W.Q. Liu, X.M. Wang, Z.L. Deng, Robust centralized and weighted measurement fusion Kalman estimators for uncertain multisensor systems with linearly correlated white noises. Inf. Fusion 35, 11–25 (2017)

    Article  MATH  Google Scholar 

  26. J. Ma, S.L. Sun, Optimal linear estimation for systems with multiplicative noise uncertainties and multiple packet dropouts. IET Signal Process. 6(9), 839–848 (2012)

    Article  MathSciNet  Google Scholar 

  27. J. Ma, S.L. Sun, Distributed fusion filter for networked stochastic uncertain systems with transmission delays and packet dropouts. Signal Process. 130, 268–278 (2017)

    Article  Google Scholar 

  28. N. Nahi, Optimal recursive estimation with uncertain observation. IEEE Trans. Inf. Theory 15(4), 457–462 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  29. C.Y. Pang, S.L. Sun, Fusion predictors for multi-sensor stochastic uncertain systems with missing measurements and unknown measurement disturbances. IEEE Sens. J. 15(8), 4346–4354 (2015)

    Article  Google Scholar 

  30. W.J. Qi, P. Zhang, Z.L. Deng, Robust weighted fusion Kalman filters for multisensor time-varying systems with uncertain noise variances. Signal Process. 99, 185–200 (2014)

    Article  MATH  Google Scholar 

  31. W.J. Qi, P. Zhang, G.H. Nie, Z.L. Deng, Robust weighted fusion Kalman predictors with uncertain noise variances. Digit. Signal Process. 30, 37–54 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  32. W.J. Qi, P. Zhang, G.H. Nie, Z.L. Deng, Robust weighted fusion time-varying Kalman smoothers for multisensor system with uncertain noise variances. Inf. Sci. 282, 15–37 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  33. X.M. Qu, J. Zhou, E.B. Song, Y.M. Zhu, Minimax robust optimal estimation fusion in distributed multisensor systems with uncertainties. IEEE Signal Process. Lett. 17(9), 811–814 (2010)

    Article  Google Scholar 

  34. C.J. Ran, Z.L. Deng, Self-tuning distributed measurement fusion Kalman estimator for the multi-channel ARMA signal. Signal Process. 91, 2028–2041 (2011)

    Article  MATH  Google Scholar 

  35. P. Shi, F.B. Li, L.G. Wu, C.C. Lim, Neural network-based passive filtering for delayed neutral-type semi-Markovian jump systems. IEEE Trans. Neural Netw. Learn. Syst. (2016). doi:10.1109/TNNLS.2016.2573853

    Google Scholar 

  36. P. Shi, X. Luan, F. Liu, \(H_\infty \) filtering for discrete-time systems with stochastic incomplete measurement and mixed delays. IEEE Trans. Ind. Electron. 59(6), 2732–2739 (2012)

    Article  Google Scholar 

  37. X.J. Sun, Z.L. Deng, Optimal and self-tuning weighted measurement fusion Wiener filter for the multisensor multichannel ARMA signals. Signal Process. 89, 738–752 (2009)

    Article  MATH  Google Scholar 

  38. S.L. Sun, X.Y. Li, S.W. Yan, Estimators for autoregressive moving average signals with multiple sensors of different missing measurement rates. IET Signal Process. 6(3), 178–185 (2012)

    Article  MathSciNet  Google Scholar 

  39. G.L. Tao, Z.L. Deng, Convergence of self-tuning Riccati equation for systems with unknown parameters and noise variances, in Proceedings of the 8th World Congress on Intelligent Control and Automation, Jinan, China, pp. 5732–5736 (2010)

  40. A.M. Tekalp, G. Pavlovic, Image restoration with multiplicative noise: incorporating the sensor nonlinearity. IEEE Trans. Signal Process. 39(9), 2132–2136 (1991)

    Article  Google Scholar 

  41. T. Tian, S.L. Sun, N. Li, Multi-sensor information fusion estimators for stochastic uncertain systems with correlated noises. Inf. Fusion 27, 126–137 (2016)

    Article  Google Scholar 

  42. F. Wang, V. Balakrishnan, Robust estimation for systems with deterministic and stochastic uncertainties, in Proceedings of the 38th IEEE Conference on Decision and Control, Phoenix, USA, pp. 1946–1951 (1999)

  43. Z.D. Wang, D.W.C. Ho, X.H. Liu, Robust filtering under randomly varying sensor delay with variance constraints. IEEE Trans. Circuits Syst. II Exp. Briefs 51(6), 320–326 (2004)

    Article  Google Scholar 

  44. X.M. Wang, W.Q. Liu, Z.L. Deng, Robust weighted fusion Kalman estimators for multi-model multisensor systems with uncertain-variance multiplicative and linearly correlated additive white noises. Signal Process. 137, 339–355 (2017)

    Article  Google Scholar 

  45. H.S. Xi, The guaranteed estimation performance filter for discrete-time descriptor systems with uncertain noise. Int. J. Syst. Sci. 28(1), 113–121 (1997)

    Article  MATH  Google Scholar 

  46. H.S. Zhang, D. Zhang, L.H. Xie, J. Lin, Robust filtering under stochastic parametric uncertainties. Automatica 40, 1583–1589 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  47. X. Zhu, C.Y. Soh, L.H. Xie, Design and analysis of discrete-time robust Kalman filters. Automatica 38(6), 1069–1077 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  48. J. Zhu, H.S. Xi, H.B. Ji, B. Wang, Robust Kalman filtering of discrete-time Markovian jump systems based on state estimation performance. Control Theory Appl. 25(1), 115–119 (2008)

    Google Scholar 

  49. Y.M. Zhu, Z.S. You, J. Zhao, K.H. Zhang, X.R. Li, The optimality for the distributed Kalman filtering fusion with feedback. Automatica 37, 1489–1493 (2001)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China under Grants NSFC-60874063 and NSFC-60374026 and the Science and Technology Research Foundation of Heilongjiang Education Department under Grant 12541698. The authors thank the reviewers and editors for their helpful and constructive comments, which have been very valuable in improving the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zi-Li Deng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, WQ., Wang, XM. & Deng, ZL. Robust Centralized and Weighted Measurement Fusion Kalman Predictors with Multiplicative Noises, Uncertain Noise Variances, and Missing Measurements. Circuits Syst Signal Process 37, 770–809 (2018). https://doi.org/10.1007/s00034-017-0578-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-017-0578-6

Keywords

Navigation