Skip to main content
Log in

A Method for Chaotic Self-Modulation in Nonlinear Colpitts Oscillator and its Potential Applications

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

The paper presents a simple modification in feedback connectivity of the standard chaotic Colpitts oscillator for producing harmonic self-modulation of the chaotic output. The modification consists of replacing the usual shunt feedback connectivity by a secondary LC-tank of resonance frequency lower than that of the primary LC-tank which defines the feedback network. The secondary LC-tank works as notch filter for the feedback signal and introduces additional frequency nonlinearity. This results in sinusoidal amplitude modulation of the chaotic output at frequency equal to the resonance frequency of the secondary LC-tank. The modulation depth is controlled by the biasing current and the load resistance. The modified circuit exhibits varied chaotic self-modulation characteristics with respect to variations in the system parameters. The modification outlines an approach for embedding self-modulating chaos control that can be extended for developing novel parametric chaos modulators and demodulators with embedded reference signal for chaos synchronization. A discussion on potential advantages and applications of this modification in chaos communication and sensors is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. S.I. An, F. Jin, Linear solutions for the frequency and amplitude modulation of ENSO by the annual cycle. Tellus 63A(2), 238–243 (2011)

    Article  MathSciNet  Google Scholar 

  2. P. Arena, S. Baglio, L. Fortuna, G. Manganaro, How state controlled CNN cells generate the dynamics of the Colpitts-like oscillator. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 43(7), 602–605 (1996)

    Article  Google Scholar 

  3. E.M. Bollt, Review of chaos communication by feedback control of symbolic dynamics. Int. J. Bifurc. Chaos 13, 269–285 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. L. Buscarino, M. Frasca, G. Sciuto, Coupled inductor-based chaotic Colpitts oscillator. Int. J. Bifurc. Chaos 21(2), 569–574 (2011)

    Article  Google Scholar 

  5. K.T. Chau, Z. Wang, Chaos in Electric Drive Systems: Analysis, Control and Application (Wiley, Singapore, 2011)

    Book  Google Scholar 

  6. K.M. Cuomo, A.V. Oppenheim, Circuit implementation of synchronized chaos with applications to communication. Phys. Rev. Lett. 71(1), 65–68 (1993)

    Article  Google Scholar 

  7. S.K. Dana, P.K. Roy, G.C. Sethia, A. Sen, D.C. Sengupta, Taming of chaos and synchronization in RCL-shunted Josephson junctions by external forcing. IEE Proc. Circuits Devices Syst. 153(5), 453–460 (2006)

    Article  Google Scholar 

  8. A. Dmitriev, E. Efremova, L. Kuzmin, N. Atanov, Forming pulses in nonautonomous chaotic oscillator. Int. J. Bifurc. Chaos 17(10), 3443–3448 (2007)

    Article  MATH  Google Scholar 

  9. D. Docampo, A.R. Figueiras-Vidal, F. Perez-Gonzâlez (eds.), Intelligent Methods in Signal Processing and Communications (Springer Science+Business Media, New York, 1997)

    MATH  Google Scholar 

  10. A.M. Dolov, S.P. Kutznetsov, Chaos-controlling technique for suppressing self-modulation in backward-wave tubes. Tech. Phys. 48(8), 139–142 (2003)

    Article  Google Scholar 

  11. M. Eisencraft, R. Attux, R. Suyama, Chaotic Signals in Digital Communications (CRC, Boca Raton, 2014)

    Google Scholar 

  12. D.J. Farmer, Information dimension and the probability structure of chaos. Z. Natureforsch. 37, 1304–1314 (1982)

    Google Scholar 

  13. J.C. Feng, C.K. Tse, Reconstruction of Chaotic Signals with Applications to Chaos-Based Communications (World Scientific, Singapore, 2008)

    Book  MATH  Google Scholar 

  14. A.L. Fradkov, R.J. Evans, Control of chaos: methods and applications in engineering. Annu. Rev. Control 29, 33–56 (2005)

    Article  Google Scholar 

  15. R.C. Hilborn, Chaos and Nonlinear Dynamics: An Introduction for Scientists and Engineers, 2nd edn. (Oxford University Press, New York, 2000). ch. 4

    Book  MATH  Google Scholar 

  16. B. Jovic, Synchronization Techniques for Chaotic Communication Systems (Springer, Berlin, 2011)

    Book  MATH  Google Scholar 

  17. M.P. Kennedy, Chaos in Colpitts oscillator. IEEE Trans. Circuits Syst. 41, 771–774 (1994)

    Article  Google Scholar 

  18. L. Kocarev, S. Lian (eds.), Chaos-Based Cryptography: Theory, Algorithms and Applications (Springer, Berlin, 2011)

    MATH  Google Scholar 

  19. L.E. Larson, J.M. Liu, L.S. Tsimring (eds.), Digital Communications Using Chaos and Nonlinear Dynamics (Springer Science+Business Media, LLC, New York, 2006)

    Google Scholar 

  20. F.C.M. Lau, C.K. Tse, Chaos-Based Digital Communication Systems: Operating Principles, Analysis Methods and Performance Evaluation (Springer, Berlin, 2003)

    Book  MATH  Google Scholar 

  21. B. Levush, T.M. Antonsen, A. Bromborsky, Q.R. Lou, Y. Carmel, Theory of relativistic backward-wave oscillators with end reflections. IEEE Trans. Plasma Sci. 20(3), 263–280 (1992)

    Article  Google Scholar 

  22. G.H. Li, S.P. Zhou, K. Yang, Controlling chaos in Colpitts oscillator. Chaos Solitons Fractals 33, 582–587 (2007)

    Article  Google Scholar 

  23. W.H. Loh, Y. Ozek, C.L. Tang, High-frequency polarization self-modulation and chaotic phenomena in external cavity semiconductor lasers. Appl. Phys. Lett. 56(26), 2613–2615 (1990)

    Article  Google Scholar 

  24. K. Park, Y.C. Lai, S. Krishnamoorthy, A. Kandangath, Effect of common noise on phase synchronization in coupled chaotic oscillators. Chaos 17, 013105-1-5 (2007)

    MATH  Google Scholar 

  25. T.S. Parker, L.O. Chua, Practical Numerical Algorithms for Chaotic Systems (Springer, New York, 1989)

    Book  MATH  Google Scholar 

  26. L.M. Pecora, T.L. Caroll, Synchronization in chaotic systems. Phys. Rev. Lett. 64(8), 821–824 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  27. G. Perez, H.A. Cerdeira, Extracting messages masked by chaos. Phys. Rev. Lett. 74(11), 1970–1973 (1995)

    Article  Google Scholar 

  28. S. Qiao, T. Jiang, L. Ran, K. Chen, Ultra-wide band noise-signal radar utilizing microwave chaotic signals and chaos synchronization. PIER 3(8), 1326–1329 (2007)

    Google Scholar 

  29. E. Rubiola, Phase, Noise and Frequency Stability in Oscillators (Cambridge University Press, Cambridge, 2009)

    Google Scholar 

  30. N.M. Ryskin, V.N. Titov, Self-modulation and chaotic regimes of generation in a relativistic backward-wave oscillator with end reflections. Radiophys. Quantum Electron. 44(10), 793–806 (2001)

    Article  Google Scholar 

  31. E. Schöll, H.G. Schuster, Handbook of Chaos Control (Wiley-VCH, Weinheim, 2008)

    MATH  Google Scholar 

  32. C.P. Silva, A.M. Young, in Introduction to Chaos-Based Communications and Signal Processing. Aerospace Conference Proceedings, IEEE, vol. 1 (2000), pp. 279–299

  33. I. Solodov, J. Wackerl, K. Pfleiderer, G. Busse, Nonlinear self-modulation and subharmonic acoustic spectroscopy for damage detection and location. Appl. Phys. Lett. 84(26), 5386–5388 (2004)

    Article  Google Scholar 

  34. P. Stavroulakis (ed.), Chaos Applications in Telecommunications (CRC Press, Boca Raton, 2006)

    Google Scholar 

  35. J.S. Török, Analytical Mechanics with an Introduction to Dynamical Systems, ch. 6 (Wiley-Interscience, New York, 2000)

    Google Scholar 

  36. A. Van der Ziel, Noise in Solid State Devices and Circuits (Wiley-Interscience, New York, 1986)

    Google Scholar 

  37. G. Vasilescu, Electronic Noise and Interfering Signals: Principles and Applications (Springer, Berlin, 2005)

    Google Scholar 

  38. E. Vittoz, Low-Power Crystal and MEMS Oscillators (Springer, New York, 2010)

    Book  Google Scholar 

  39. A. Wolf, J.B. Swift, H.L. Swinney, J.A. Vastano, Determining Lyapunov exponents from a time series. Physica 16D, 285–317 (1985)

    MathSciNet  MATH  Google Scholar 

  40. H. Zhang, D. Liu, Z. Wang, Controlling Chaos: Suppression, Synchronization and Chaotification (Springer, London, 2009)

    Book  MATH  Google Scholar 

  41. C. Zhou, J. Kurths, I.Z. Kiss, J.L. Hudson, Noise-enhanced phase synchronization of chaotic oscillators. Phys. Rev. Lett. 89(1), 014101-1-4 (2002)

    Article  Google Scholar 

Download references

Acknowledgements

The author Saumitra Mishra is thankful to University Grants Commission, New Delhi, for providing UGC fellowship. The authors would like to thank their colleagues Mr. Aman Kumar Singh, Mr. T. Sonamani Singh, Mr. Anurag Gupta and Ms. Priyanka Singh for their help and support. Thanks are due to Prof. Arvind. K. Mishra for his valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. D. S. Yadava.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, S., Yadava, R.D.S. A Method for Chaotic Self-Modulation in Nonlinear Colpitts Oscillator and its Potential Applications. Circuits Syst Signal Process 37, 532–552 (2018). https://doi.org/10.1007/s00034-017-0579-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-017-0579-5

Keywords

Navigation