Skip to main content
Log in

Analysis of an Enhanced-Q N-Path Filter with Improved Even-Order Harmonic Rejection

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Based on a feedback system, an N-path bandpass filter robust to even-order harmonic mixing (BPF-REHM) is presented. BPF-REHM consists of a conventional differential N-path filter around a gain stage. Despite assuming a single-ended antenna, this work aims at partial rejection of even-order harmonics before the signal travels through the baseband circuitry. Linear periodically time-varying analysis of the new filter is presented. Mathematical derivations verify an enhanced-Q filtering behavior in addition to even-order harmonic rejection at RF nodes. Drawback of BPF-REHM, i.e., input impedance mismatch, is addressed by proposing a two-stage LNA. The second stage of the new LNA, which is the BPF-REHM, suppresses even-order harmonic blockers while the first stage matches the input to the source and provides enough gain to accomplish an acceptable overall noise performance. The design example is a 500 MHz four-path filter simulated with the 90 nm CMOS. It achieves >22 dB even harmonic rejection with an enhanced-Q filtering characteristic thanks to the new technique. Besides, this design achieves 21 dB gain, 2 dB NF, and \(+\)2.5 dBm out-of-band IIP3 at 50 MHz offset while consuming 8.3 mW of power.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. R. Bagheri et al., An 800-MHz–6-GHz software-defined wireless receiver in 90-nm CMOS. IEEE J. Solid State Circuits 41(12), 28602876 (2006)

    Article  Google Scholar 

  2. M. Darvishi, R. van der Zee, B. Nauta, Design of active N-path filters. IEEE J. Solid State Circuits 48(12), 29622976 (2013)

    Article  Google Scholar 

  3. M. Darvishi, Active N-Path Filters: Theory and Design. Ph.D. dissertation, University of Twente (2013)

  4. I. Fabiano et al., SAW-less analog front-end receivers for TDD and FDD. IEEE J. Solid State Circuits 48(12), 3067–3079 (2013)

    Article  Google Scholar 

  5. F. Gatta, et al., An embedded 65 nm CMOS low-IF 48 MHz-to-1 GHz dual tuner for DOCSIS 3.0, in IEEE ISSCC Digest Technical Papers (2009), pp. 122–123

  6. P.R. Gray et al., Analysis and Design of Analog Integrated Circuits (Wiley, London, 2001)

    Google Scholar 

  7. A. Ghaffari et al., Tunable high-Q N-path band-pass filters: modeling and verification. IEEE J. Solid State Circuits 46(5), 998–1010 (2011)

    Article  Google Scholar 

  8. S.-C. Hwu, R. Razavi, A receiver architecture for intra-band carrier aggregation, in IEEE VLSI Circuits Digest Technical Papers (2014)

  9. Z. Lin, P. Mak, R. Martins, Analysis and modeling of a gain-boosted N-path switched-capacitor bandpass filter. IEEE Trans. Circuits Syst. I Regul. Pap. 61(9), 2560–2568 (2014)

    Article  Google Scholar 

  10. S. Lerstaveesin et al., A 48860 MHz CMOS low-IF direct-conversion DTV tuner. IEEE J. Solid State Circuits 43(9), 20132024 (2008)

    Article  Google Scholar 

  11. A. Mirzaei et al., A 65 nm CMOS quad-band SAW-less receiver SOC for GSM/GPRS/EDGE. IEEE J. Solid State Circuits 46(4), 950964 (2011)

    Article  Google Scholar 

  12. A. Mirzaei, H. Darabi, D. Murphy, A low-power process-scalable superheterodyne receiver with integrated high-Q filters, in ISSCC Digest Technical Papers (2011), p. 6061

  13. A. Maxim, et al., A DDFS-driven mixing-DAC with image and harmonic rejection, in ISSCC Digest Technical Papers (2008), pp. 372–373

  14. N.A. Moseley et al., A two-stage approach to harmonic rejection mixing using blind interference cancellation. IEEE Trans. Circuits Syst. II Express Briefs 55(10), 2560–2568 (2014)

    Google Scholar 

  15. J. Park, B. Razavi, Channel selection at RF using Miller bandpass filters. IEEE J. Solid State Circuits 49(12), 3063–3078 (2014)

    Article  Google Scholar 

  16. C.L. Phillips, J.M. Parr, Signals, Systems and Transforms (Prentice Hall, Englewood Cliffs, 1995)

    MATH  Google Scholar 

  17. Z. Ru et al., Digitally enhanced software-defined radio receiver robust to out-of-band interference. IEEE J. Solid State Circuits 44(12), 33593374 (2009)

    Article  Google Scholar 

  18. B. Razavi, The future of radios, in IEEE International Symposium on Circuits and Systems (2015)

  19. M. Soer et al., Unified frequency-domain analysis of switched-series-passive mixers and samplers. IEEE Trans. Circuit Syst. I Regul. Pap. 57(10), 2618–2631 (2010)

    Article  MathSciNet  Google Scholar 

  20. J.A. Weldon et al., A 1.75-GHz highly integrated narrow-band CMOS transmitter with harmonic-rejection mixers. IEEE J. Solid State Circuits 36(12), 20032015 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahdi Tavassoli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tavassoli, M., Jalali, A. Analysis of an Enhanced-Q N-Path Filter with Improved Even-Order Harmonic Rejection. Circuits Syst Signal Process 37, 939–964 (2018). https://doi.org/10.1007/s00034-017-0580-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-017-0580-z

Keywords

Navigation