Skip to main content
Log in

Hyperchaotic Attractor in a Novel Hyperjerk System with Two Nonlinearities

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Hyperjerk systems have received considerable interest in the literature because of their simplicity and complex dynamical properties. In this work, we introduce a novel hyperjerk system with an absolute nonlinearity and a quintic term. Interestingly, the hyperjerk system exhibits hyperchaotic behavior. Dynamics and the feasibility of the hyperjerk system are discovered by using numerical analysis and circuit implementation. Moreover, adaptive controllers have been designed for stabilization and synchronization of the new hyperjerk system. The control results have been established by using Lyapunov stability theory, and numerical simulations with MATLAB have been shown to illustrate the validity of the constructed adaptive controllers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S. Banerjee, Chaos Synchronization and Cryptography for Secure Communication (IGI Global, Pennsylvania, 2010)

    Google Scholar 

  2. M. Borah, P.P. Singh, B.K. Roy, Improved chaotic dynamics of a fractional-order system, its chaos-suppressed synchronisation and circuit implementation. Circuits Syst. Signal Process. 35, 1871–1907 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. S. Bouali, A. Buscarino, L. Fortuna, M. Frasca, L.V. Gambuzza, Emulating complex business cycles by using an electronic analogue. Nonl. Anal: Real World Appl. 13, 2459–2465 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. J.F. Chang, T.L. Liao, J.J. Yan, H.C. Chen, Implementation of synchronized chaotic Lu systems and its application in secure communication using PSO-based PI controller. Circuits Syst. Signal Process. 29, 527–538 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. G.R. Chen, T. Ueta, Yet another chaotic attractor. Int. J. Bifurc. Chaos 9, 1465–1466 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. K.E. Chlouverakis, J.C. Sprott, Chaotic hyperjerk systems. Chaos, Solitons Fractals 28, 739–746 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. S. Cicek, Y. Uyaroglu, I. Pehlivan, Simulation and circuit implementation of Sprott case H chaotic system and its synchronization application for secure communication systems. J. Circuit Syst. Comput. 22, 1350,022 (2013)

    Article  Google Scholar 

  8. F.Y. Dalkiran, J.C. Sprott, Simple chaotic hyperjerk system. Int. J. Bifurc. Chaos 26, 1650189 (2016)

    Article  MathSciNet  Google Scholar 

  9. R. Eichhorn, S.J. Linz, P. Hanggi, Simple polynomial classes of chaotic jerky dynamics. Chaos Solitons Fractals 13, 1–15 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Z. Elhadj, J.C. Sprott, Transformation of 4-D dynamical systems to hyperjerk form. Palest. J. Maths. 2, 38–45 (2013)

    MathSciNet  MATH  Google Scholar 

  11. E. Fatemi-Behbahani, K. Ansari-Asl, E. Farshidi, A new approach to analysis and design of chaos-based random number generators using algorithmic converter. Circuits Syst. Signal Process. 35, 3830–3846 (2016)

    Article  Google Scholar 

  12. P. Fei, Q. Shui-Sheng, L. Min, A secure digital signature algorithm based on elliptic curve and chaotic mappings. Circuits Syst. Signal Process. 24, 585–597 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. R.A. Freeman, P.V. Kokotović, Backstepping design of robust controllers for a class of nonlinear systems. In: Procedings of IJAC Nonlinear Control Systems Design Symposium, pp. 307–312. Bordeaux, France (1992)

  14. J. Kengne, Z.T. Njitacke, H. Fotsin, Dynamical analysis of a simple autonomous jerk system with multiple attractors. Nonlinear Dyn. 83, 751–765 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. H.K. Khalil, Nonlinear Systems, 3rd edn. (Prentice Hall, New Jersey, 2002)

    MATH  Google Scholar 

  16. M.F. Khan, F. Baig, S. Beg, Steganography between silence intervals of audio in video content using chaotic map. Circuits Syst. Signal Process. 33, 3901–3919 (2014)

    Article  Google Scholar 

  17. S.T. Kingni, V.T. Pham, S. Jafari, G.R. Kol, P. Woafo, Three-dimensional chaotic autonomous system with a circular equilibrium: analysis, circuit implementation and its fractional-order form. Circuits Syst. Signal Process. 35, 1933–1948 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. C. Lainscsek, C. Lettellier, I. Gorodnitsky, Global modeling of the rössler system from the z-variable. Phys. Lett. A 314, 409–427 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. F.C.M. Lau, G. Kolumban, Performance limit of chaotic digital waveform communication systems: approach of maximizing a posteriori probability. Circuits Syst. Signal Process. 24, 639–655 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. S.J. Linz, Nonlinear dynamical models and jerky motion. Am. J. Phys. 65, 523–526 (1997)

    Article  Google Scholar 

  21. S.J. Linz, On hyperjerky systems. Chaos, Solitons Fractals 37, 741–747 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. C. Liu, J. Yi, X. Xi, L. An, Y. Fu, Research on the multi-scroll chaos generation based on Jerk mode. Proc. Eng. 29, 957–961 (2012)

    Article  Google Scholar 

  23. H. Liu, A. Kadir, Y. Li, Audio encryption scheme by confusion and diffusion based on multi-scroll chaotic system and one-time keys. Optik 127, 7431–7438 (2016)

    Article  Google Scholar 

  24. E. Lorenz, Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141 (1963)

    Article  Google Scholar 

  25. P. Louodop, M. Kountchou, H. Fotsin, S. Bowong, Practical finite-time synchronization of jerk systems: theory and experiment. Nonlinear Dyn. 78, 597–607 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. J.M. Malasoma, What is the simplest dissipative chaotic jerk equation which is parity invariant. Phys. Lett. A 264, 383–389 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  27. D. Meng, Robust adaptive synchronization of the energy resource system with constraint. Math. Probl. Eng. 2013, 1–7 (2013)

    MathSciNet  Google Scholar 

  28. D. Meng, Adaptive neural networks synchronization of a four-dimensional energy resource stochastic system. Abstr. Appl. Anal. 2014, 1–8 (2014)

    MathSciNet  Google Scholar 

  29. D. Meng, Neural networks adaptive synchronization for four-dimension energy resource system with unknown dead zones. Neurocomputing 151, 1495–1499 (2015)

    Article  Google Scholar 

  30. B. Munmuangsaen, B. Srisuchinwong, Elementary chaotic snap flows. Chaos, Solitons Fractals 44, 995–1003 (2011)

    Article  Google Scholar 

  31. B. Munmuangsaen, B. Srisuchinwong, J.C. Sprott, Generalization of the simplest autonomous chaotic system. Phys. Lett. A 375, 1445–1450 (2011)

    Article  MATH  Google Scholar 

  32. S. Sahin, C. Guzelis, A dynamical state feedback chaotification method with application on liquid mixing. J. Circuit Syst. Comput. 22, 1350059 (2013)

    Article  Google Scholar 

  33. S. Schot, Jerk: the time rate of change of acceleration. Am. J. Phys. 46, 1090–1094 (1978)

    Article  Google Scholar 

  34. J. Sprott, Some simple chaotic flows. Phys. Rev. E 50, R647–650 (1994)

    Article  MathSciNet  Google Scholar 

  35. J.C. Sprott, Some simple chaotic jerk functions. Am. J. Phys. 65, 537–543 (1997)

    Article  Google Scholar 

  36. J.C. Sprott, Elegant Chaos Algebraically Simple Chaotic Flows (World Scientific, Singapore, 2010)

    Book  MATH  Google Scholar 

  37. J.C. Sprott, A new chaotic jerk circuit. IEEE Trans. Circuits Syst.-II: Exp. Briefs 58, 240–243 (2011)

    Article  Google Scholar 

  38. B. Srisuchinwong, N. Amonchailertrat, Realization of a Lambert W-function for a chaotic circuit. J. Circuit Syst. Comput. 22, 1350075 (2013)

    Article  Google Scholar 

  39. K.H. Sun, J.C. Sprott, A simple jerk system with piecewise exponential nonlinearity. Int. J. Nonlinear Sci. Num. Simul. 10, 1443–1450 (2009)

    Article  Google Scholar 

  40. A. Tayebi, S. Berber, A. Swain, Performance analysis of chaotic DSSS-CDMA synchronization under jamming attack. Circuits Syst. Signal Process. 35, 4350–4371 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  41. S. Vaidyanathan, Analysis, adaptive control and synchronization of a novel 4-D hyperchaotic hyperjerk system via backstepping control method. Arch. Control Sci. 26, 311–338 (2016)

    Google Scholar 

  42. S. Vaidyanathan, C. Volos, V.T. Pham, K. Madhavan, Analysis, adaptive control and synchronization of a novel 4-D hyperchaotic hyperjerk system and its SPICE implementation. Arch. Control Sci. 25, 135–158 (2015)

    MathSciNet  Google Scholar 

  43. S. Vaidyanathan, C. Volos, V.T. Pham, K. Madhavan, B.A. Idowo, Adaptive backstepping control, synchronization and circuit simulation of a 3-D novel jerk chaotic system with two hyperbolic sinusoidal nonlinearities. Arch. Control Sci. 33, 257–285 (2014)

    MathSciNet  MATH  Google Scholar 

  44. C.K. Volos, I.M. Kyprianidis, I.N. Stouboulos, A chaotic path planning generator for autonomous mobile robots. Robot. Autom. Syst. 60, 651–656 (2012)

    Article  Google Scholar 

  45. C.K. Volos, I.M. Kyprianidis, I.N. Stouboulos, Image encryption process based on chaotic synchronization phenomena. Signal Process. 93, 1328–1340 (2013)

    Article  Google Scholar 

  46. B. Wang, H. Xu, P. Yang, L. Liu, J. Li, Target detection and ranging through lossy media using chaotic radar. Entropy 17, 2082–2093 (2015)

    Article  Google Scholar 

  47. K.W. Wong, K.P. Man, S. Li, X. Liao, A more secure chaotic cryptographic scheme based on the dynamic look-up table. Circuits Syst. Signal Process. 24, 571–584 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  48. X. Wu, Y. He, W. Yu, B. Yin, A new chaotic attractor and its synchronization implementation. Circuits Syst. Signal Process. 34, 1747–1768 (2015)

    Article  Google Scholar 

  49. Y. Wu, R. Lu, P. Shi, H. Su, Z. Wu, Adaptive output synchronization of heterogeneous network with an uncertain leader. Automatica 76, 183–192 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  50. Y. Wu, X. Meng, L. Xie, R. Lu, H. Su, Z. Wu, An input-based triggering approach to leader-following problems. Automatica 75, 221–228 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  51. Y. Wu, H. Su, P. Shi, R. Lu, Z. Wu, Consensus of multiagent systems using aperiodic sampled-data control. IEEE Trans. Cybern. 46, 2132–2143 (2016)

    Article  Google Scholar 

  52. Y. Wu, H. Su, P. Shi, R. Lu, Z. Wu, Output synchronization of nonidentical linear multiagent systems. IEEE Trans. Cybern. 47, 130–141 (2017)

    Article  Google Scholar 

  53. X. Xie, Z. Liu, X. Zhu, An efficient approach for reducing the conservatism of LMI-based stability conditions for continuous-time T-S fuzzy systems. J. Fuzzy Sets Syst. 263, 71–81 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  54. X. Xie, D. Yue, T. Ma, X. Zhu, Further studies on control synthesis of discrete-time T-S fuzzy systems via augmented multi-indexed matrix approach. IEEE Trans. Cybern. 44, 2784–2791 (2014)

    Article  Google Scholar 

  55. M.E. Yalcin, J.A.K. Suykens, J. Vandewalle, True random bit generation from a double-scroll attractor. IEEE Trans. Circuits Syst. I, Regular Pap. 51, 1395–1404 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  56. D. Zhang, P. Shi, Q. Wang, L. Yu, Analysis and synthesis of networked control systems: a survey of recent advances and challenges. ISA Trans. 66, 376–392 (2017)

    Article  Google Scholar 

  57. D. Zhang, P. Shi, W. Zhang, L. Yu, Energy–efficient distributed filtering in sensor networks: a unified switched system approach. IEEE Trans. Cybern. pp. 1–12 (2016). doi: 10.1109/TCYB.2016.2553043)

  58. D. Zhang, H.Y. Song, L. Yu, Robust fuzzy–model–based filtering for nonlinear cyber–physical systems with multiple stochastic incomplete measurements. IEEE Trans. Syst. Man Cybern. pp. 1–13 (2016). doi: 10.1109/TSMC.2016.2551200)

  59. D. Zhang, Q. Wang, D. Srinivasan, H. Li, L. Yu, Asynchronous state estimation for discrete–time switched complex networks with communication constraints. IEEE Trans. Neural Netw. Learn. Syst. pp. 1–15 (2017). doi: 10.1109/TNNLS.2017.2678681)

  60. J. Zhou, T. Chen, L. Xiang, Chaotic lag synchronization of coupled delayed neural networks and its applications in secure communication. Circuits Syst. Signal Process. 24, 599–613 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  61. W. Zhou, Z. Wang, M. Wu, W. Zheng, J. Weng, Dynamics analysis and circuit implementation of a new three-dimensional chaotic system. Optik 126, 765–768 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Prof. GuanRong Chen, Department of Electronic Engineering, City University of Hong Kong, for suggesting many helpful references.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viet–Thanh Pham.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daltzis, P., Vaidyanathan, S., Pham, V. et al. Hyperchaotic Attractor in a Novel Hyperjerk System with Two Nonlinearities. Circuits Syst Signal Process 37, 613–635 (2018). https://doi.org/10.1007/s00034-017-0581-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-017-0581-y

Keywords

Navigation