Skip to main content
Log in

CCII-Based Voltage Amplifier Optimization for Reduced Relative Gain Error

  • Short Paper
  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper describes strategies to design voltage amplifiers, based on the second-generation current conveyors, CCIIs, with a relative gain error (RGE). The approach is independent from the internal architecture of the employed CCII and allows to reduce the RGE of the overall amplifier by taking into account the main CCII non-idealities. In particular, it describes how to evaluate the specific optimum resistive loads minimizing RGE, also proving that these values are independent from the CCII internal implementation and related only to the parasitic components at X and Z nodes as well as to the desired ideal voltage gain. In order to validate the proposed design methodology, the commercial component AD844 has been considered as the CCII. Both analytical relationships and experimental results confirm the calculation of an optimum load resistance which minimizes the RGE of the voltage amplifier and, simultaneously, that a more accurate voltage gain can be obtained if the nominal values of the CCII parasitic resistances are taken into account. The reported findings provide design rules to implement, also at transistor level in a standard CMOS technology, CCII-based voltage amplifiers with low relative gain errors, which are of special interest for sensor interfaces and measurement systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. AD844, Current Feedback Op-Amp Datasheet, Analog Devices Inc., Norwood, MA (1990)

  2. M. Aurelio Duarte-Villasenor, E. Tlelo-Cuautle, L. Gerardo de la Fraga, Binary genetic encoding for the synthesis of mixed-mode circuit topologies. Circuits Syst. Signal Process. 31, 849–863 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. C.M. Chang, M.N.S. Swamy, A.M. Soliman, Analytical synthesis of voltage-mode even/odd-nth-order differential difference current conveyor and fully differential current conveyor II-grounded resistor and capacitor universal filter structures. Int. J. Circuit Theor. Appl. 43, 1263–1310 (2015). doi:10.1002/cta.2011

    Article  Google Scholar 

  4. I. Choi, H. Seo, B. Kim, Accurate dB-linear variable gain amplifier with gain error compensation. IEEE J. Solid-State Circuits 48(2), 456–464 (2013). doi:10.1109/JSSC.2012.2227606

    Article  Google Scholar 

  5. A. De Marcellis, C. Di Carlo, G. Ferri, V. Stornelli, A CCII-based wide frequency range square waveform generator. Int. J. Circuit Theor. Appl. 41(1), 1–13 (2011). doi:10.1002/cta.781

    Google Scholar 

  6. A. De Marcellis, G. Ferri, Analog Circuits and Systems for Voltage-Mode and Current-Mode Sensor Interfacing Applications (Springer, Amsterdam, 2011)

    Book  Google Scholar 

  7. G. Di Cataldo, G. Palumbo, S. Pennisi, A Schmitt trigger by means of a CCII+. Int. J. Circuit Theor. Appl. 23, 161–165 (1995). doi:10.1007/s00034-011-9373-y

    Article  Google Scholar 

  8. J. Dostal, Operational Amplifiers (Elsevier, Boston, 2013)

    Google Scholar 

  9. C. Falconi, C. Di Natale, A. D’Amico, M. Faccio, Electronic interface for the accurate read-out of resistive sensors in low voltage-low power integrated systems. Sens. Actuators A Phys. 117, 121–126 (2005). doi:10.1016/j.sna.2004.05.025

    Article  Google Scholar 

  10. C. Falconi, G. Ferri, V. Stornelli, A. De Marcellis, D. Mazzieri, A. D’Amico, Current-mode high-accuracy high-precision CMOS amplifiers. IEEE Trans. Circuits Syst. II 55(5), 394–398 (2008). doi:10.1109/TCSII.2007.914407

    Article  Google Scholar 

  11. C. Falconi, E. Martinelli, C. Di Natale, A. D’Amico, F. Maloberti, P. Malcovati, A. Baschirotto, V. Stornelli, G. Ferri, Electronic interfaces. Sens. Actuators B Chem. 121, 295–329 (2007)

    Article  Google Scholar 

  12. G. Ferri, A. De Marcellis, C. Di Carlo, V. Stornelli, A. Flammini, A. Depari, D. Marioli, E. Sisinni, A CCII-based low-voltage low-power read-out circuit for DC-excited resistive gas sensors. IEEE Sens. J. 9(12), 2035–2041 (2009). doi:10.1109/JSEN.2009.2033197

    Article  Google Scholar 

  13. G. Ferri, N.C. Guerrini, Low Voltage Low Power CMOS Current Conveyors (Kluwer Academic Publisher, Boston, 2003)

    Google Scholar 

  14. G. Ferri, V. Stornelli, M. Fragnoli, An integrated improved CCII topology for resistive sensor application. Analog Integr. Circuits Signal Process. 48(3), 247–250 (2006)

    Article  Google Scholar 

  15. J. Huijsing, R.J. Van de Plassche, W. Sansen, Analog Circuit Design: Low-Noise, Low-Power, Low-Voltage; Mixed-Mode Design with CAD Tools; Voltage, Current and Time References (Springer Science & Business Media, Boston, 2013)

    MATH  Google Scholar 

  16. T.M. Khaneshan, M. Nematzade, K. Hadidi, A. Khoei, Analysis and design of a precise voltage buffer. J. Circuits Syst. Comput. 24(4) (2015). doi:10.1142/S0218126615500589

  17. F. Khateb, N. Khatib, D. Kubánek, Novel ultra-low-power class AB CCII+ based on floating-gate folded cascode OTA. Circuits Syst. Signal Process. 31(2), 447–464 (2012)

    Article  MathSciNet  Google Scholar 

  18. K. Koli, K. Halonen, CMOS Current Amplifiers (Kluwer Academic Publishers, Boston, 2002)

    Google Scholar 

  19. J.M. Munoz-Pacheco, E. Tlelo-Cuautle, I.R. Toxqui-Toxqui, R. Trejo-Guerra, Frequency limitations in generating multi-scroll chaotic attractors using CFOAs. Int. J. Electron. 101(11), 1559–1569 (2014)

    Article  Google Scholar 

  20. J. Nunez, E. Tlelo-Cuautle, C. Ramirez, J.M. Jimenez, CCII plus based on QFGMOS for implementing Chua’s chaotic oscillator. IEEE Lat. Am. Trans. 13, 2865–2870 (2015)

    Article  Google Scholar 

  21. S. Palmisano, G. Palumbo, S. Pennisi, CMOS Current Amplifiers (Springer Science & Business Media, New York, 2012)

    Google Scholar 

  22. L. Safari, S. Minaei, A novel resistor-free electronically adjustable current-mode instrumentation amplifier. Circuits Syst. Signal Process. 32(3), 1025–1038 (2013)

    Article  Google Scholar 

  23. R. Senani, A.K. Singh, V.K. Singh, Current Feedback Operational Amplifiers and Their Applications (Springer Science & Business Media, London, 2013)

    Book  Google Scholar 

  24. W.A. Serdijn, A.C. Van Der Woerd, J.C. Kuenen, Low-Voltage Low-Power Analog Integrated Circuits (Kluwer Academic Publishers, Boston, 1995)

    Book  Google Scholar 

  25. V. Stornelli, G. Ferri, A. De Marcellis, C. Falconi, D. Mazzieri, A. D’Amic,o, High-accuracy, high-precision DEM-CCII amplifiers. In Proceedings IEEE ISCAS, pp. 2196–2199 (2007)

  26. E. Tlelo-Cuautle, A.C. Sanabria-Borbon, Optimising operational amplifiers by evolutionary algorithms and gm/Id method. Int. J. Electron. 103(10), 1–20 (2016)

  27. E. Tlelo-Cuautle, C. Sanchez-Lopez, D. Moro-Frias, Symbolic analysis of (MO)(I)CCI(II)(III)-based analog circuits. Int. J. Circuit Theor. Appl. 38, 649–659 (2010)

    Google Scholar 

  28. C. Toumazou, A. Payne, D. Haigh, Analogue IC Design: The Current Mode Approach (Peter Peregrinus, London, 1990)

    Google Scholar 

  29. R. Trejo-Guerra, E. Tlelo-Cuautle, C. Cruz-Hernández, C. Sánchez-López, Chaotic communication system using Chua’s oscillators realized with CCII plus. Int. J. Bifurc. Chaos 19(12), 4217–4226 (2009)

    Article  Google Scholar 

  30. R. Trejo-Guerra, E. Tlelo-Cuautle, C. Sanchez-Lopez, J.M. Munoz-Pacheco, C. Cruz-Hernandez, Realization of multiscroll chaotic attractors by using current-feedback operational amplifiers. Rev. Mex. Fis. 56(4), 268–274 (2010)

    Google Scholar 

  31. J.F. Witte, K.A. Makinwa, J.H. Huijsing, A CMOS Chopper offset-stabilized Opamp. In Proceedings IEEE ESSCIRC, vol. 1, pp. 360–363 (2006). doi:10.1109/ESSCIR.2006.307605

  32. F. Yuan, Low-voltage CMOS current-mode preamplifier: analysis and design. IEEE Circuits Syst. Mag. 53(1), 26–39 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesca Romana Parente.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Colucci, P., D’Amico, A., De Marcellis, A. et al. CCII-Based Voltage Amplifier Optimization for Reduced Relative Gain Error. Circuits Syst Signal Process 37, 1315–1326 (2018). https://doi.org/10.1007/s00034-017-0590-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-017-0590-x

Keywords

Navigation