Skip to main content
Log in

Finite-Time Control of Multiple Different-Order Chaotic Systems with Two Network Synchronization Modes

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper mainly investigates finite-time synchronization of multiple different-order chaotic systems. Two kinds of different network synchronization modes are considered here, and the definitions of finite-time synchronization errors are given for such systems by constructing the proper vectors mapping functions. On the basis of finite-time control idea, the synchronization schemes are developed to ensure the asymptotical stability of two classes of different error systems in finite-time. Afterward, two numerical examples are calculated and simulated to illustrate the effectiveness and feasibility of proposed strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. M. Alsawalha, M. Noorani, Adaptive increasing-order synchronization and anti-synchronization of chaotic systems with fully uncertain parameters. Chin. Phys. Lett. 28(11), 110507,1–110507,3 (2011)

    Google Scholar 

  2. I. Ahmad, A.B. Saaban, A.B. Ibrahim, M. Shahzad, M.M. Al-sawalha, Reduced-order synchronization of time-delay chaotic systems with known and unknown parameters. Optik 127(13), 5506–5514 (2016)

    Article  Google Scholar 

  3. I. Ahmad, M. Shafiq, A.B. Saaban, A.B. Ibrahim, M. Shahzad, Robust finite-time global synchronization of chaotic systems with different orders. Optik 127(19), 8172–8185 (2016)

    Article  Google Scholar 

  4. A. Abdullah, Synchronization and secure communication of uncertain chaotic systems based on full-order and reduced-order output-affine observers. Appl. Math. Comput. 219(19), 10000–10011 (2013)

    MathSciNet  MATH  Google Scholar 

  5. L. Bai, Q. Zhou, L. Wang, Z. Yu, Observer-based adaptive control for stochastic non-strict-feedback systems with unknown backlash-like hysteresis. Int. J. Adap. Control Signal Process. (2017). doi:10.1002/acs.2780

  6. X. Chen, C. Wang, J. Qiu, Synchronization and anti-synchronization of N different coupled chaotic systems with ring connection. Int. J. Modern Phys. C 25(4), 12 (2014)

    Google Scholar 

  7. X. Chen, J. Cao, J. Qiu, A. Alsaedi, F.E. Alsaadi, Adaptive control of multiple chaotic systems with unknown parameters in two different synchronization modes. Adv. Differ. Equ. 231, 1–17 (2016)

    MathSciNet  Google Scholar 

  8. X. Chen, J. Qiu, J. Cao, H. He, Hybrid synchronization behavior in an array of coupled chaotic systems with ring connection. Neurocomputing 173, 1299–1309 (2016)

    Article  Google Scholar 

  9. X. Chen, J. H. Park, J. Cao, J. Qiu, Sliding mode synchronization of multiple chaotic systems with uncertainties and disturbances. Appl. Math. Comput. 308, 161–173 (2017)

  10. J. Cheng, J. H. Park, Y. Liu, Z. Liu et al., Finite-time H-infinity fuzzy control of nonlinear Markovian jump delayed systems with partly uncertain transition descriptions. Fuzzy Sets Syst. 314, 99–115 (2017)

  11. N. Cai, W. Li, Y. Jing, Finite-time generalized synchronization of chaotic systems with different order. Nonlinear Dyn. 64(4), 385–393 (2011)

    Article  MathSciNet  Google Scholar 

  12. H. Du, Y. He, Y. Cheng, Finite-time synchronization of a class of second-order nonlinear multi-agent systems using output feedback control. IEEE Trans. Circuits Syst. I 61(6), 1778–1788 (2014)

    Article  Google Scholar 

  13. R. Femat, G.S. Perales, Synchronization of chaotic systems with different order. Phys. Rev. E 65(5), 036226,1–036226,7 (2002)

    Google Scholar 

  14. M. Hu, J. Cao, A. Hu et al., A novel finite-time stability criterion for linear discrete-time stochastic system with applications to consensus of multi-agent system. Circuits Syst. Signal Process 34(1), 41–59 (2015)

    Article  MATH  Google Scholar 

  15. C. Jiang, S.T. Liu, Generalized combination complex synchronization of new hyperchaotic complex Lü-like systems. Adv. Differ. Equ. 214, 1–17 (2015)

    MathSciNet  Google Scholar 

  16. B. Kaviarasan, R. Sakthivel, Y. Lim, Synchronization of complex dynamical networks with uncertain inner coupling and successive delays based on passivity theory. Neurocomputing 186, 127–138 (2016)

    Article  Google Scholar 

  17. Y. Liu, L. Lü, Synchronization of \(N\) different coupled chaotic systems with ring and chain connections. Appl. Math. Mech. Engl. Ed. 29(10), 1181–1190 (2008)

    Article  MathSciNet  Google Scholar 

  18. Y. Li, S. Tong, L. Liu, G. Feng, Adaptive output-feedback control design with prescribed performance for switched nonlinear systems. Automatica 80, 225–231 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. Y. Li, S. Sui, S. Tong, Adaptive fuzzy control design for stochastic nonlinear switched systems with arbitrary switchings and unmodeled dynamics. IEEE Trans. Cybern. 47(2), 403–414 (2017)

    Google Scholar 

  20. F.L. Lewis, B. Cui, T. Ma, Y. Song, C. Zhao, Heterogeneous multi-agent systems: reduced-order synchronization and geometry. IEEE Trans. Autom. Control. 61(5), 1391–1396 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. S. Li, Y. Tian, Finite time synchronization of chaotic systems. Chaos Soliton. Fract. 15, 303–310 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  22. X. Liu, J. Cao, W. Yu, Q. Song, Nonsmooth finite-time synchronization of switched coupled neural networks. IEEE Trans. Cybern. 46(10), 2360–2371 (2016)

    Article  Google Scholar 

  23. D. Li, J. Cao, Finite-time synchronization of coupled networks with one single time-varying delay coupling. Neurocomputing 166, 265–270 (2015)

    Article  Google Scholar 

  24. X. Liu, D.W.C. Ho, J. Cao, W. Xu, Discontinuous observers design for finite-time consensus of multiagent systems with external disturbances. IEEE Trans. Neural Netw. Learn. Syst. (2017). doi:10.1109/TNNLS.2016.2599199

  25. Y. Li, S. Tong, T. Li, Hybrid fuzzy adaptive output feedback control design for uncertain MIMO nonlinear systems with time-varying delays and input saturation. IEEE Trans. Fuzzy Syst. 24(4), 841–853 (2016)

    Article  Google Scholar 

  26. Y. Li, S. Tong, Adaptive fuzzy output-feedback stabilization control for a class of switched non-strict-feedback nonlinear systems. IEEE Trans. Cybern. 47(4), 1007–1016 (2017)

    Article  Google Scholar 

  27. K.S. Ojo, A.N. Njah, O.I. Olusola, Generalized reduced-order hybrid combination synchronization of three Josephson junctions via active backstepping technique. Nonlinear Dyn. 77(3), 583–595 (2014)

    Article  MATH  Google Scholar 

  28. L.M. Pecora, T.L. Carroll, Synchronization in chaotic systems. Phys. Rev. Lett. 64(8), 821–824 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  29. J. H. Park, Z. Tang, J. Feng, Pinning cluster synchronization of delay coupled Lur’e dynamical networks in a convex domain. Nonlinear Dyn. 89(1), 623–638 (2017)

  30. J. H. Park, T.H. Lee, Synchronization of complex dynamical networks with discontinuous coupling signals. Nonlinear Dyn. 79(2), 1353–1362 (2015)

  31. R. Sakthivel, S. Santra, S.M. Anthoni, V. Kuppili, Synchronization and anti-synchronization of chaotic systems with application to DC–DC boost converter. IET Gener. Transm. Distrib. 11(4), 959–967 (2017)

    Article  Google Scholar 

  32. J. Sun, Y. Shen, G. Cui, Compound synchronization of four chaotic complex systems. Adv. Math. Phys. 921515, 11 (2015)

    MathSciNet  MATH  Google Scholar 

  33. J. Sun, Y. Shen, X. Wang, J. Chen, Finite-time combination-combination synchronization of four different chaotic systems with unknown parameters via sliding mode control. Nonlinear Dyn. 76(1), 383–397 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  34. J. Sun, Y. Shen, G.D. Zhang, Transmission projective synchronization of multi-systems with non-delayed and delayed coupling via impulsive control. Chaos 22, 043107 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  35. J. Sun, Y. Wu, G. Cui, Y. Wang, Finite-time real combination synchronization of three complex-variable chaotic systems with unknown parameters via sliding mode control. Nonlinear Dyn. (2017). doi:10.1007/s11071-017-3338-z

  36. M. Sathishkumar, R. Sakthivel, O.M. Kwon, B. Kaviarasan, Finite-time mixed H-infinity and passive filtering for Takagi–Sugeno fuzzy nonhomogeneous Markovian jump systems. Int. J. Syst. Sci. 48(7), 1416–1427 (2017)

    Article  MATH  Google Scholar 

  37. Y. Tang, H. Gao, W. Zhang, J. Kurths, Leader-following consensus of a class of stochastic delayed multi-agent systems with partial mixed impulses. Automatica 53(1), 346–354 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  38. Y. Tang, J. Fang, Synchronization of \(N\)-coupled fractional-order chaotic systems with ring connection. Commun. Nonlinear Sci. Numer. Simul. 15(2), 401–412 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  39. Y. Tang, H. Gao, J. Lu, J. Kurths, Pinning distributed synchronization of stochastic dynamical networks: a mixed optimization approach. IEEE Trans. Neural Netw. Learn. Syst. 25(10), 1804–1815 (2014)

    Article  Google Scholar 

  40. U.E. Vincent, R. Gao, Finite-time synchronization for a class of chaotic and hyperchaotic systems via adaptive feedback controller. Phys. Lett. A 375(24), 2322–2326 (2011)

    Article  MATH  Google Scholar 

  41. Y. Wu, J. Cao, Q. Li, A. Alsaedi, F.E. Alsaadi, Finite-time synchronization of uncertain coupled switched neural networks under asynchronous switching. Neural Netw. 85, 128–139 (2017)

    Article  Google Scholar 

  42. H. Yan, F. Qian, H. Zhang, F. Yang, G. Guo, H-infinity fault detection for networked mechanical spring-mass systems with incomplete information. IEEE Trans. Ind. Electron. 63(9), 5622–5631 (2016)

    Article  Google Scholar 

  43. J. Yang, Y. Chen, F. Zhu, Singular reduced-order observer-based synchronization for uncertain chaotic systems subject to channel disturbance and chaos-based secure communication. Appl. Math. Comput. 229(25), 227–238 (2014)

    MATH  Google Scholar 

  44. X. Yang, J. Cao, Q. Song et al., Finite-Time synchronization of coupled markovian discontinuous neural networks with nixed delays. Circuits Syst. Signal Process 36(5), 1860–1889 (2017)

    Article  MATH  Google Scholar 

  45. Q. Zhou, D. Yao, J. Wang, C. Wu, Robust control of uncertain semi-Markovian jump systems using sliding mode control method. Appl. Math. Comput. 286, 72–87 (2016)

    MathSciNet  Google Scholar 

  46. S. Zheng, Multi-switching combination synchronization of three different chaotic systems via nonlinear control. Optik 127(21), 10247–10258 (2016)

    Article  Google Scholar 

  47. H. Zhang, Q. Hong, H. Yan, F. Yang, G. Guo, Event-based distributed H-infinity filtering networks of 2DOF quarter-car suspension systems. IEEE Trans. Ind. Inform. 13(1), 312–321 (2017)

    Article  Google Scholar 

  48. H. Zhang, X. Zheng, H. Yan, C. Peng, Z. Wang, Q. Chen, Codesign of event-triggered and distributed H-infinity filtering for active semi-vehicle suspension systems. IEEE Trans. Mech. 22(2), 1047–1058 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinde Cao or Ju H. Park.

Additional information

This work was supported in part by the National Natural Science Foundation of China, under Grants 61403179, 61273012, 11471061 and 61573102, by a Project of the Postdoctoral Sustentation Fund of Jiangsu Province under Grant 1402042B, by the Applied Mathematics Enhancement Program (AMEP) of Linyi University by the Natural Science Foundation of CQ under Grant CSTC 2014J-CYJA40004, and by the 2016 Visiting Scholar Program of China Scholarship Council.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Cao, J., Park, J.H. et al. Finite-Time Control of Multiple Different-Order Chaotic Systems with Two Network Synchronization Modes. Circuits Syst Signal Process 37, 1081–1097 (2018). https://doi.org/10.1007/s00034-017-0608-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-017-0608-4

Keywords

Navigation