Skip to main content
Log in

Bistable Hidden Attractors in a Novel Chaotic System with Hyperbolic Sine Equilibrium

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

For the past 4 years, there has been a rapid rise in the study of chaotic systems with curves of equilibria which are categorized as systems with hidden attractors. There is still significant controversy surrounding the shapes of equilibrium points. This paper presents a new three-dimensional autonomous chaotic system with hyperbolic sine equilibrium. Fundamental dynamical properties and complex dynamics of the system have been discovered by using equilibrium analysis, phase portrait, Poincaré map, bifurcation diagram and Lyapunov spectrum. It is crucial to note that there are bistable hidden chaotic attractors in the introduced system. Furthermore, in order to show the feasibility of the new system with hyperbolic sine equilibrium, its electronic circuit has been implemented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. S. Banerjee, Chaos Synchronization and Cryptography for Secure Communication (IGI Global, Cleveland, 2010)

    Google Scholar 

  2. S. Bouali, A. Buscarino, L. Fortuna, M. Frasca, L.V. Gambuzza, Emulating complex business cycles by using an electronic analogue. Nonlinear Anal. Real World Appl. 13, 2459–2465 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. A. Buscarino, L. Fortuna, M. Frasca, L.V. Gambuzza, A chaotic circuit based on Hewlett–Packard memristor. Chaos 22, 023,136 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. J.F. Chang, T.L. Liao, J.J. Yan, H.C. Chen, Implementation of synchronized chaotic Lu systems and its application in secure communication using PSO-based PI controller. Circuits Syst. Signal Process. 29, 527–538 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. G.R. Chen, T. Ueta, Yet another chaotic attractor. Int. J. Bifurc. Chaos 9, 1465–1466 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Y. Chen, Q. Yang, A new Lorenz-type hyperchaotic system with a curve of equilibria. Math. Comput. Simul. 112, 40–55 (2015)

    Article  MathSciNet  Google Scholar 

  7. J.M. Cushing, S.M. Henson, C.C. Blackburn, Multiple mixed attractors in a competition model. J. Biol. Dyn. 1, 347–362 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. D. Dudkowski, S. Jafari, T. Kapitaniak, N. Kuznetsov, G. Leonov, A. Prasad, Hidden attractors in dynamical systems. Phys. Rep. 637, 1–50 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. E. Fatemi-Behbahani, K. Ansari-Asl, E. Farshidi, A new approach to analysis and design of chaos-based random number generators using algorithmic converter. Circuits Syst. Signal Process. 35, 3830–3846 (2016)

    Article  Google Scholar 

  10. P. Fei, Q. Shui-Sheng, L. Min, A secure digital signature algorithm based on elliptic curve and chaotic mappings. Circuits Syst. Signal Process. 24, 585–597 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. L. Fortuna, M. Frasca, M.G. Xibilia, Chua’s Circuit Implementation: Yesterday, Today and Tomorrow (World Scientific, Singapore, 2009)

    Book  Google Scholar 

  12. T. Gotthans, J. Petržela, New class of chaotic systems with circular equilibrium. Nonlinear Dyn. 73, 429–436 (2015)

    MathSciNet  Google Scholar 

  13. T. Gotthans, J.C. Sprott, J. Petržela, Simple chaotic flow with circle and square equilibrium. Int. J.Bifurc. Chaos 26, 1650,137 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. M.P. Hanias, G. Giannaris, A.R. Spyridakis, Time series analysis in chaotic diode resonator circuit. Chaos Solitons Fract. 27, 569–573 (2006)

    Article  MATH  Google Scholar 

  15. C. Hens, S.K. Dana, U. Feudel, Extreme multistability: attractors manipulation and robustness. Chaos 25, 053,112 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. J.B. Hu, G.P. Lu, S.B. Zhang, L.D. Zhao, Lyapunov stability theorem about fractional system without and with delay. Commun. Nonlinear Sci. Numer. Simul. 20, 905–913 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. J.B. Hu, H. Wei, L.D. Zhao, Synchronization of fractional-order chaotic systems with multiple delays by a new approach. Kybernetika 20, 905–913 (2015)

    MathSciNet  Google Scholar 

  18. J.B. Hu, L.D. Zhao, Finite-time synchronizing fractional-order chaotic Volta system with nonidentical orders. Math. Probl. Eng. 2013, 1–4 (2013)

    MathSciNet  MATH  Google Scholar 

  19. M. Hussain, M. Rehan, Nonlinear time-delay anti-windup compensator synthesis for nonlinear time-delay systems: a delay-range-dependent approach. Neurocomputing 186, 54–65 (2016)

    Article  Google Scholar 

  20. S. Jafari, J. Sprott, S.M.R.H. Golpayegani, Elementary quadratic chaotic flows with no equilibria. Phys. Lett. A 377, 699–702 (2013)

    Article  MathSciNet  Google Scholar 

  21. S. Jafari, J.C. Sprott, Simple chaotic flows with a line equilibrium. Chaos Solitons Fract. 57, 79–84 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. T. Kapitaniak, G.A. Leonov, Multistability: uncovering hidden attractors. Eur. Phys. J. Spec. Top. 224, 1405–1408 (2015)

    Article  Google Scholar 

  23. J. Kengne, Coexistence of chaos with hyperchaos, period-3 doubling bifurcation, and transient chaos in the hyperchaotic oscillator with gyrators. Int. J. Bifurc. Chaos 25, 1550,052 (2015)

    Article  MathSciNet  Google Scholar 

  24. J. Kengne, J.C. Chedjou, M. Kom, K. Kyamakya, V.K. Tamba, Regular oscillations, chaos, and multistability in a system of two coupled van der Pol oscillators: numerical and experimental studies. Nonlinear Dyns. 76, 1119–1132 (2014)

    Article  MathSciNet  Google Scholar 

  25. J. Kengne, Z.T. Njitacke, H.B. Fotsin, Dynamical analysis of a simple autonomous jerk system with multiple attractors. Nonlinear Dyns. 77, 373–386 (2014)

    Article  Google Scholar 

  26. J. Kengne, Z.T. Njitacke, A.N. Negou, M.F. Tsostop, H.B. Fotsin, Coexistence of multiple attractors and crisis route to chaos in a novel chaotic jerk circuit. Int. J. Bifurc. Chaos 26, 1650,081 (2016)

    Article  MATH  Google Scholar 

  27. M.F. Khan, F. Baig, S. Beg, Steganography between silence intervals of audio in video content using chaotic map. Circuits Syst. Signal Process. 33, 3901–3919 (2014)

    Article  Google Scholar 

  28. S.T. Kingni, V.T. Pham, S. Jafari, G.R. Kol, P. Woafo, Three-dimensional chaotic autonomous system with a circular equilibrium: analysis, circuit implementation and its fractional-order form. Circuits Syst. Signal Process. 35(19), 331–1948 (2016)

    MathSciNet  MATH  Google Scholar 

  29. F.C.M. Lau, G. Kolumban, Performance limit of chaotic digital waveform communication systems: approach of maximizing a posteriori probability. Circuits Syst. Signal Process. 24, 639–655 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  30. R.B. Leipnik, T.A. Newton, Double strange attractors in rigid body motion with linear feedback control. Phys. Lett. A 86, 63–87 (1981)

    Article  MathSciNet  Google Scholar 

  31. G.A. Leonov, N.V. Kuznetsov, Hidden attractors in dynamical systems: from hidden oscillation in Hilbert–Kolmogorov, Aizerman and Kalman problems to hidden chaotic attractor in Chua circuits. Int. J. Bifurc. Chaos 23, 1330,002 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  32. G.A. Leonov, N.V. Kuznetsov, M.A. Kiseleva, E.P. Solovyeva, A.M. Zaretskiy, Hidden oscillations in mathematical model of drilling system actuated by induction motor with a wound rotor. Nonlinear Dyn. 77, 277–288 (2014)

    Article  Google Scholar 

  33. G.A. Leonov, N.V. Kuznetsov, T.N. Mokaev, Hidden attractor and homoclinic orbit in Lorenz-like system describing convective fluid motion in rotating cavity. Commun. Nonlinear Sci. Numer. Simul. 28, 166–174 (2015)

    Article  MathSciNet  Google Scholar 

  34. G.A. Leonov, N.V. Kuznetsov, V.I. Vagaitsev, Localization of hidden Chua’s attractors. Phys. Lett. A 375, 2230–2233 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  35. G.A. Leonov, N.V. Kuznetsov, V.I. Vagaitsev, Hidden attractor in smooth Chua system. Physica D 241, 1482–1486 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  36. C. Li, J.C. Sprott, Chaotic flows with a single nonquadratic term. Phys. Lett. A 378, 178–183 (2014)

    Article  MathSciNet  Google Scholar 

  37. C. Li, J.C. Sprott, Finding coexisting attractors using amplitude control. Nonlinear Dyn. 78, 2059–2064 (2014)

    Article  MathSciNet  Google Scholar 

  38. C. Li, J.C. Sprott, W. Thio, Linearization of the Lorenz system. Phys. Lett. A 379, 888–893 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  39. C. Li, J.C. Sprott, W. Thio, H. Zhu, A new piecewise linear hyperchaotic circuit. IEEE Trans. Circuits Syst. II Exp Briefs 61, 977–981 (2014)

    Article  Google Scholar 

  40. C. Li, J.C. Sprott, Z. Yuan, H. Li, Constructing chaotic systems with total amplitude control. Int. J. Bifurc. Chaos 25, 1530,025 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  41. E. Lorenz, Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141 (1963)

    Article  Google Scholar 

  42. C. Masoller, Coexistence of attractors in a laser diode with optical feedback from a large external cavity. Phys. Rev. A 50, 2569–2578 (1994)

    Article  Google Scholar 

  43. J.R. Piper, J.C. Sprott, Simple autonomous chaotic circuits. IEEE Trans. Circuits Syst. II Exp. Briefs 57, 730–734 (2010)

    Article  Google Scholar 

  44. A.N. Pisarchik, U. Feudel, Control of multistability. Phys. Rep. 540, 167–218 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  45. M.A. Rafique, M. Rehan, M. Siddique, Adaptive mechanism for synchronization of chaotic oscillators with interval time-delays. Nonlinear Dyn. 81, 495–509 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  46. M. Rehan, M. Tufail, K.S. Hong, Delay-range-dependent synchronization of drive and response systems under input delay and saturation. Chaos Solitons Fract. 87, 197–207 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  47. M. Riaz, M. Rehan, M. Ashraf, Synchronization of nonlinear master-slave systems under input delay and slope-restricted input nonlinearity. Complexity 21, 220–233 (2015)

    Article  MathSciNet  Google Scholar 

  48. M. Riaz, M. Rehan, K.S. Hong, M. Ashraf, H. Rashid, Static and adaptive feedback control for synchronization of different chaotic oscillators with mutually Lipschitz nonlinearities. Chin. Phys. B 23, 11502–11517 (2014)

    Article  Google Scholar 

  49. O. Rössler, An equation for continuous chaos. Phys. Lett. A 57, 397–398 (1976)

    Article  MATH  Google Scholar 

  50. W. San-Um, B. Suksiri, P. Ketthong, A simple RLCC-diode-opamp chaotic oscillator. Int. J. Bifurc. Chaos 24, 1450,155 (2014)

    Article  MATH  Google Scholar 

  51. M. Siddique, M. Rehan, A concept of coupled chaotic synchronous observers for nonlinear and adaptive observers-based chaos synchronization. Nonlinear Dyn. 84, 2251–2272 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  52. J.C. Sprott, Elegant Chaos Algebraically Simple Chaotic Flows (World Scientific, Singapore, 2010)

    Book  MATH  Google Scholar 

  53. B. Srisuchinwong, B. Munmuangsaen, Four-current-tunable chaotic oscillators in set of two diode-reversible pairs. Electron. Lett. 48, 1051–1053 (2006)

    Article  Google Scholar 

  54. D.W. Sukov, M.E. Bleich, J. Gauthier, J.E.S. Socolar, Controlling chaos in a fast diode resonator using extended time-delay autosynchronization: experimental observations and theoretical analysis. Chaos 7, 560–576 (1997)

    Article  Google Scholar 

  55. A. Tamasevicius, G. Mykolaitis, V. Pyragas, K. Pyragas, A simple chaotic oscillator for educational purposes. Eur. J. Phys. 26, 61–63 (2005)

    Google Scholar 

  56. A. Tayebi, S. Berber, A. Swain, Performance analysis of chaotic DSSS-CDMA synchronization under jamming attack. Circuits Syst. Signal Process. 35, 4350–4371 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  57. V. Vaithianathan, J. Veijun, Coexistence of four different attractors in a fundamental power system model. IEEE Trans. Circuits Syst. I(46), 405–409 (1999)

    Google Scholar 

  58. C.K. Volos, I.M. Kyprianidis, I.N. Stouboulos, A chaotic path planning generator for autonomous mobile robots. Robot. Auton. Syst. 60, 651–656 (2012)

    Article  Google Scholar 

  59. C.K. Volos, I.M. Kyprianidis, I.N. Stouboulos, Image encryption process based on chaotic synchronization phenomena. Signal Process. 93, 1328–1340 (2013)

    Article  Google Scholar 

  60. S. Wang, J. Feng, S. Xie, A multiuser chaotic communication scheme by parameter division multiple access. Circuits Syst. Signal Process. 26, 839–852 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  61. X. Wang, G. Chen, A chaotic system with only one stable equilibrium. Commun. Nonlinear Sci. Numer. Simul. 17, 1264–1272 (2012)

    Article  MathSciNet  Google Scholar 

  62. X. Wang, G. Chen, Constructing a chaotic system with any number of equilibria. Nonlinear Dyn. 71, 429–436 (2013)

    Article  MathSciNet  Google Scholar 

  63. Z. Wei, Dynamical behaviors of a chaotic system with no equilibria. Phys. Lett. A 376, 102–108 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  64. A. Wolf, J.B. Swift, H.L. Swinney, J.A. Vastano, Determining Lyapunov exponents from a time series. Physica D 16, 285–317 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  65. K.W. Wong, K.P. Man, S. Li, X. Liao, A more secure chaotic cryptographic scheme based on the dynamic look-up table. Circuits Syst. Signal Process. 24, 571–584 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  66. X. Wu, Y. He, W. Yu, B. Yin, A new chaotic attractor and its synchronization implementation. Circuits Syst. Signal Process. 34, 1747–1768 (2015)

    Article  Google Scholar 

  67. X. Xu, J. Guo, Combined equalization and demodulation of chaotic direct sequence spread spectrum signals for multipath channels. Circuits Syst. Signal Process. 32, 2957–2969 (2013)

    Article  MathSciNet  Google Scholar 

  68. M.E. Yalcin, S. Özoguz, n-Scroll chaotic attractors from a first-order time-delay differential equation. Chaos 17, 033,112 (2007)

    Article  MATH  Google Scholar 

  69. M.E. Yalcin, J.A.K. Suykens, J. Vandewalle, True random bit generation from a double-scroll attractor. IEEE Trans. Circuits Syst. I Regul. Pap. 51, 1395–1404 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  70. M.H. Zaheer, M. Rehan, G. Mustafa, M. Ashraf, Delay-range-dependent chaos synchronization approach under varying time-lags and delayed nonlinear coupling. ISA Trans. 53, 1716–1730 (2014)

    Article  Google Scholar 

  71. Z. Zeng, T. Huang, W. Zheng, Multistability of recurrent networks with time-varying delays and the piecewise linear activation function. IEEE Trans. Neural Netw. 21, 1371–1377 (2010)

    Article  Google Scholar 

  72. Z. Zeng, W. Zheng, Multistability of neural networks with time-varying delays and concave–convex characteristic. IEEE Trans. Neural Netw. Learn. Syst. 23, 293–305 (2012)

    Article  Google Scholar 

  73. L.D. Zhao, J.B. Hu, J.A. Fang, W.X. Cui, Y.L. Xu, X. Wang, Adaptive synchronization and parameter identification of chaotic system with unknown parameters and mixed delays based on a special matrix structure. ISA Trans. 52, 738–743 (2013)

    Article  Google Scholar 

  74. L.D. Zhao, J.B. Hu, J.A. Fang, W.B. Zhang, Studying on the stability of fractional-order nonlinear system. Nonlinear Dyn. 70, 475–479 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  75. J. Zhou, T. Chen, L. Xiang, Chaotic lag synchronization of coupled delayed neural networks and its applications in secure communication. Circuits Syst. Signal Process. 24, 599–613 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  76. W. Zhou, Z. Wang, M. Wu, W. Zheng, J. Weng, Dynamics analysis and circuit implementation of a new three-dimensional chaotic system. Optik 126, 765–768 (2015)

    Article  Google Scholar 

  77. Z.T. Zhusubaliyev, E. Mosekilde, Multistability and hidden attractors in a multilevel DC/DC converter. Math. Comput. Simul. 109, 32–45 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Editor and Reviewers for their invaluable comments and suggestions on the article. The authors acknowledge Prof. GuanRong Chen, Department of Electronic Engineering, City University of Hong Kong, for suggesting many helpful references. This work has been supported by the Polish National Science Centre, MAESTRO Programme Project No. 2013/08/A/ST8/00/780.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viet-Thanh Pham.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pham, VT., Volos, C., Kingni, S.T. et al. Bistable Hidden Attractors in a Novel Chaotic System with Hyperbolic Sine Equilibrium. Circuits Syst Signal Process 37, 1028–1043 (2018). https://doi.org/10.1007/s00034-017-0611-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-017-0611-9

Keywords

Navigation