Skip to main content
Log in

Adaptive Fuzzy Observer-Based Fault-Tolerant Control for Takagi–Sugeno Descriptor Nonlinear Systems with Time Delay

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper investigates the problems of state/fault estimation and active fault-tolerant control (AFTC) design for time-delay descriptor fuzzy systems subject to external disturbances and actuator faults. Using Takagi–Sugeno fuzzy models, an adaptive fuzzy observer is proposed to achieve system state and actuator fault estimation simultaneously. According to Lyapunov functional method, design and analysis conditions of the resulting closed-loop delayed descriptor system are formulated in terms of linear matrices inequalities (LMIs). Observer and controller gains are computed by solving a set of LMIs in only one step and then used to both estimate the unmeasured states and actuator faults in AFTC context. Numerical examples are provided to show the merit and the conservativeness of the proposed approach in comparison with the existing methods by considering various types of actuator faults.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M. Alma, M. Darouach, Adaptive observers design for a class of linear descriptor systems. Automatica 50(2), 578–583 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. M. Blanke, R. Izadi-Zamanabadi, S. Bogh, C. Lunau, Fault-tolerant control systems—a holistic view. Control Eng. Pract. 5(5), 693–702 (1997)

    Article  Google Scholar 

  3. Y.Y. Cao, P.M. Frank, Analysis and synthesis of nonlinear time-delay systems via fuzzy control approach. IEEE Trans. Fuzzy Syst. 8(2), 200–211 (2000)

    Article  Google Scholar 

  4. M. Chadli, H.R. Karimi, Robust observer design for unknown inputs Takagi–Sugeno models. IEEE Trans. Fuzzy Syst. 21(1), 158–164 (2013)

    Article  Google Scholar 

  5. M. Darouach, M. Boutayeb, Design of observers for descriptor systems. IEEE Trans. Autom. Control 40(7), 1323–1327 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  6. B. Erkus, Y.J. Lee, Linear matrix inequalities and matlab lmi toolbox, in University of Southern California Group Meeting Report (Los Angeles, 2004)

  7. H. Gassara, A.E. Hajjaji, M. Chaabane, Adaptive fault tolerant control design for Takagi–Sugeno fuzzy systems with interval time-varying delay. Opt. Control Appl. Methods 35, 609–625 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. H. Gassara, A.E. Hajjaji, M. Chaabane, Observer based (Q, V, R)-\(\alpha \)-dissipative control for TS fuzzy descriptor systems with time delay. J. Frankl. Inst. 351, 187–206 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. K. Gu, J. Chen, V.L. Kharitonov, Stability of Time-Delay Systems (Birkhauser, Boston, 2003)

    Book  MATH  Google Scholar 

  10. J. Han, H. Zhangn, Y. Wang, X. Liu, Robust state/fault estimation and fault tolerant control for T–S fuzzy systems with sensor and actuator faults. J. Frankl. Inst. 353, 615–641 (2016)

    Article  MathSciNet  Google Scholar 

  11. Y. He, M. Wu, J.H. She, G.P. Liu, Parameter-dependent lyapunov functional for stability of time-delay systems with polytopic-type uncertainties. IEEE Trans. Autom. Control 49(5), 828–832 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Q. Jia, W. Chen, Y. Zhang, H. Li, Fault reconstruction and fault-tolerant control via learning observers in Takagi–Sugeno fuzzy descriptor systems with time delays. IEEE Trans. Ind. Electron. 62(6), 3885–3895 (2015)

    Google Scholar 

  13. D. Kharrat, H. Gassara, A.E. Hajjaji, M. Chaabane, Fault tolerant control based on adaptive observer for Takagi–Sugeno fuzzy descriptor systems, in 16th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA) (IEEE, 2015), pp. 273–278

  14. D. Koenig, Observer design for unknown input nonlinear descriptor systems via convex optimization. IEEE Trans. Autom. Control 51, 1047–1052 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. D. Koenig, S. Mammar, Design of proportional–integral observer for unknown input descriptor systems. IEEE Trans. Autom. Control 47(12), 2057–2062 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. F. Li, P. Shi, C.C. Lim, L. Wu, Fault detection filtering for nonhomogeneous Markovian jump systems via fuzzy approach. IEEE Trans. Fuzzy Syst. (2016)

  17. C. Lin, Q.G Wang, T.H. Lee, Stability and stabilization of a class of fuzzy time-delay descriptor systems. IEEE Trans. Fuzzy Syst. 14(4), 542–551 (2006)

  18. C. Lin, Q.G. Wang, T.H. Lee, Y. He, LMI Approach to Analysis and Control of Takagi–Sugeno Fuzzy Systems with Time Delay, vol. 351 (Springer, Berlin, 2007)

    MATH  Google Scholar 

  19. B. Marx, D. Koenig, J. Ragot, Design of observers for Takagi–Sugeno descriptor systems with unknown inputs and application to fault diagnosis. IET Control Theory Appl. 1(5), 1487–1495 (2007)

    Article  MathSciNet  Google Scholar 

  20. S.M.D. Oca, V. Puig, M. Witczak, L. Dziekan, Fault tolerant control strategy for actuator faults using lpv techniques: application to a two degree of freedom helicopter. Int. J. Appl. Math. Comput. Sci. 22(1), 161–171 (2012)

    MathSciNet  MATH  Google Scholar 

  21. M. Rodrigues, H. Hamdi, D. Theilliol, C. Mechmeche, N.B. Braiek, Actuator fault estimation based adaptive polytopic observer for a class of lpv descriptor systems. Int. J. Robust Non Linear Control 25, 673–688 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Q. Shen, B. Jiang, V. Cocquempo, Fuzzy logic system-based adaptive fault-tolerant control for near-space vehicle attitude dynamics with actuator faults. IEEE Trans. Fuzzy Syst. 21(2), 289–299 (2013)

    Article  Google Scholar 

  23. J. Wang, H\(_\infty \) fault-tolerant controller design for networked control systems with time-varying actuator faults. Int. J. Innov. Comput. Inf. Control 11(4), 1471–1481 (2015)

    Google Scholar 

  24. D. Xu, B. Jiang, P. Shi, Nonlinear actuator fault estimation observer: an inverse system appraoch via a T–S fuzzy model. Int. J. Appl. Math. Comput. Sci. 22, 183–196 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. S. Xu, J. Lam, Robust H\(_\infty \) control for uncertain discrete-time delay fuzzy systems via output feedback controllers. IEEE Trans. Fuzzy Syst. 13(1), 82–93 (2005)

    Article  Google Scholar 

  26. F. Yi-Fu, Z. Xun-Lin, Z. Qing-Ling, Delay-dependent stability criteria for singular time-delay systems. Acta Autom. Sin. 36(3), 433–437 (2010)

    Article  MathSciNet  Google Scholar 

  27. K. Zhang, B. Jiang, V. Cocquempot, Adaptive observer-based fast fault estimation. Int. J. Control 6(3), 320–326 (2008)

    Google Scholar 

  28. K. Zhang, B. Jiang, P. Shi, A new approach to observer-based fault-tolerant controller design for Takagi–Sugeno fuzzy systems with state delay. Circuits Syst. Signal Process. 28, 679–697 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. M. Zhang, X. Shen, T. Li, Fault tolerant attitude control for cubesats with input saturation based on dynamic adaptive neural network. Int. J. Innov. Inf. Control 12(2), 651–663 (2016)

    Google Scholar 

  30. Z. Zuo, Y. Wang, Robust stability and stabilisation for nonlinear uncertain time-delay systems via fuzzy control approach. IET Control Theory Appl. 1(1), 422–429 (2007)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dhouha Kharrat.

Appendices

Appendix A: Proof of Theorem 1

Consider the following Lyapunov–Krasovskii functional:

$$\begin{aligned} V(t)= & {} (Ex(t))^\mathrm{T} P_1 x(t) + \int _{t-h}^{t} x^\mathrm{T}(s)Q_1 x(s)\,\mathrm {d}s + e_x^\mathrm{T}(t)P_2 e_x(t) \nonumber \\&+ \int _{t-h}^{t} e_x^\mathrm{T}(s)Q_2 e_x(s)\,\mathrm {d}s \nonumber \\&+\, \frac{1}{\sigma } e_f^\mathrm{T}(t)\Gamma ^{-1} e_f(t) + h \int _{-h}^{0} \int _{t+\theta }^{t}(E\dot{x}(s))^\mathrm{T} Z_1 (E\dot{x}(s)) \,\mathrm {d}s\,\mathrm {d}\theta \nonumber \\&+\, h \int _{-h}^{0} \int _{t+\theta }^{t} \dot{e}_{x}^\mathrm{T}(s) Z_2 \dot{e}_x(s) \,\mathrm {d}s\,\mathrm {d}\theta \end{aligned}$$
(37)

The time derivative of V(t) is given by:

$$\begin{aligned} \dot{V}(t)= & {} (E\dot{x}(t))^\mathrm{T} P_1 x(t) + (Ex(t))^\mathrm{T} P_1 \dot{x}(t)+ x^\mathrm{T}(t)Q_1 x(t) \nonumber \\&-\, x^\mathrm{T}(t-h)Q_1 x(t-h) +2 \dot{e}_x^\mathrm{T}(t)P_2 e_x(t)\nonumber \\&+\, e_x^ T(t) Q_2 e_x(t)- e_x^ T(t-h) Q_2 e_x(t-h)+ \frac{2}{\sigma } e_f^\mathrm{T}(t) \Gamma ^{-1} \dot{e}_f(t) \nonumber \\&+\, h^2[(E\dot{x}(t))^\mathrm{T} Z_1 (E\dot{x}(s))]\nonumber \\&-\,h\int _{t-h}^{t}(E\dot{x}(s))^\mathrm{T} Z_1 (E\dot{x}(s)) \,\mathrm {d}s\ + h^2 [\dot{e}_{x}^\mathrm{T}(s) Z_2 \dot{e}_x(s)]\nonumber \\&-\,h\int _{t-h}^{t} \dot{e}_{x}^\mathrm{T}(s) Z_2 \dot{e}_x(s) \,\mathrm {d}s\ \end{aligned}$$
(38)

By using Lemma 1, we have:

$$\begin{aligned} \frac{2}{\sigma }e_f^\mathrm{T}(t)\Gamma ^{-1} \dot{f}_a(t)\leqslant & {} \frac{1}{\sigma \mu } e_f^\mathrm{T}(t)M e_f(t)+ \frac{\mu }{\sigma } \dot{f}_a^\mathrm{T}(t)\Gamma ^{-1} M^{-1}\Gamma ^{-1} \dot{f}_a(t) \nonumber \\ \frac{2}{\sigma }e_f^\mathrm{T}(t)\Gamma ^{-1} \dot{f}_a(t)\leqslant & {} \frac{1}{\sigma \mu } e_f^\mathrm{T}(t)M e_f(t)+ \delta \end{aligned}$$
(39)

where

$$\begin{aligned} \delta =\frac{\mu }{\sigma }f^2_{1\mathrm{max}} \lambda _\mathrm{max}(\Gamma ^{-1} M^{-1}\Gamma ^{-1}) \end{aligned}$$
(40)

By using (23) and substituting (22), (17) and (39) into Eq. (38), one can obtain:

$$\begin{aligned} \dot{V}(t)\le & {} x(t)^\mathrm{T} [P_1^\mathrm{T}(A_i-B K_{i})+(A_i^\mathrm{T}- K_{i}^\mathrm{T} B ^\mathrm{T})P_1 +Q_1] x(t) \nonumber \\&+\,2 x(t)^\mathrm{T} P_1^\mathrm{T} A_{hi}x(t-h)+2x(t)^\mathrm{T} P_1^\mathrm{T} B K_{i} e_x(t) + 2x(t)^\mathrm{T} P_1^\mathrm{T} F_i e_f(t) \nonumber \\&- x^\mathrm{T}(t-h)Q_1 x(t-h) + e_x^\mathrm{T}(t)[ P_2 (TA_i-L_{1i}C) \nonumber \\&+(TA_i-L_{1i}C)^\mathrm{T} P_2 + Q_2] e_x(t)+2e_x^\mathrm{T}(t)P_2(TA_{hi} -L_{2i} C) e_x(t-h)\nonumber \\&-\, e_x^ T(t-h) Q_2 e_x(t-h) + \frac{1}{\sigma \mu } e_f^\mathrm{T}(t)M e_f(t)+ \delta \nonumber \\&+\, h^2[(E\dot{x}(t))^\mathrm{T} Z_1 (E\dot{x}(s))] -h\int _{t-h}^{t}(E\dot{x}(s))^\mathrm{T} Z_1 (E\dot{x}(s)) \,\mathrm {d}s \nonumber \\&+\, h^2 [\dot{e}_{x}^\mathrm{T}(s) Z_2 \dot{e}_x(s)]-h\int _{t-h}^{t} \dot{e}_{x}^\mathrm{T}(s) Z_2 \dot{e}_x(s) \,\mathrm {d}s\ \end{aligned}$$
(41)

Applying Jessen’s inequality [9] to deal with the cross product items, we obtain

$$\begin{aligned}&-h\int _{t-h}^{t}(E\dot{x}(s))^\mathrm{T} Z_1 (E\dot{x}(s)) \,\mathrm {d}s\ \le \left[ \begin{array}{cc} Ex(t)\\ Ex(t-h) \end{array} \right] ^\mathrm{T} \left[ \begin{array}{cc} -Z_1 &{} Z_{1} \\ * &{} -Z_{1} \end{array} \right] \left[ \begin{array}{cc} Ex(t)\\ Ex(t-h) \end{array} \right] \nonumber \\ \end{aligned}$$
(42)
$$\begin{aligned}&\le \left[ \begin{array}{cc} x(t)\\ x(t-h) \end{array} \right] ^\mathrm{T} \left[ \begin{array}{cc} -E^\mathrm{T} Z_1 E &{} E^\mathrm{T} Z_{1} E \\ * &{} -E^\mathrm{T} Z_{1} E \end{array} \right] \left[ \begin{array}{cc} x(t)\\ x(t-h) \end{array} \right] \end{aligned}$$
(43)
$$\begin{aligned}&-h\int _{t-h}^{t} \dot{e}_{x}^\mathrm{T}(s) Z_2 \dot{e}_x(s) \,\mathrm {d}s\ \le \left[ \begin{array}{cc} e_x(t)\\ e_x(t-h) \end{array} \right] ^\mathrm{T} \left[ \begin{array}{cc} -Z_2 &{} Z_{2} \\ * &{} -Z_{2} \end{array} \right] \left[ \begin{array}{cc} e_x(t)\\ e_x(t-h) \end{array} \right] \end{aligned}$$
(44)

Noting the extended state vector as follows:

$$\begin{aligned} \xi (t)= \left[ \begin{array}{ccccc} x^\intercal (t)&x^\intercal (t-h)&e_x^\mathrm{T}(t)&e_x^\mathrm{T}(t-h)&e^\mathrm{T}_f(t) \end{array} \right] ^\mathrm{T} \end{aligned}$$
(45)

Then, we can write :

$$\begin{aligned} \dot{V}(t)\le \xi ^ T \phi _{i}^{11} \xi (t) + h^2[(E\dot{x}(t))^\mathrm{T} Z_1 (E\dot{x}(s))] + h^2 [\dot{e}_{x}^\mathrm{T}(s) Z_2 \dot{e}_x(s)]+\delta \end{aligned}$$
(46)

where

$$\begin{aligned} \phi _{i}^{11} =\left[ \begin{array}{ccccc} \varphi _{i}^{11} &{} \varphi _{i}^{12} &{} P_1^\mathrm{T} B K_{i} &{} 0 &{} P_1^\mathrm{T} F_i \\ *&{} -(Q_1+E^\mathrm{T} Z_1 E) &{} 0 &{} 0 &{} 0 \\ *&{} *&{} \varphi _{i}^{33} &{} \varphi _{i}^{34} &{} \varphi _{i}^{35} \\ *&{} *&{} *&{} -(Q_2+ Z_2) &{} \varphi _{i}^{45} \\ *&{} *&{} *&{} *&{} \varphi _{i}^{55} \end{array} \right] \end{aligned}$$
(47)

Denote

$$\begin{aligned} \phi _{i}=\left[ \begin{array}{ccc} \phi _{i}^{11} &{} \phi _{i}^{12} &{} \phi _{i}^{13} \\ *&{} -(h^2 P_2^{-1} Z_2 P_2^{-1})^{-1} &{} 0 \\ *&{} *&{} -(h^2 P_1^{-1} Z_1 P_1^{-T})^{-1} \\ \end{array} \right] \end{aligned}$$
(48)

where

$$\begin{aligned} ({\phi _{i}^{12}})^\mathrm{T}= & {} \left[ \begin{array}{ccccc} 0 &{} 0 &{} P_2 (T A_i-L_{1i} C) &{} P_2(T A_{hi}-L_{2i} C) &{} P_2(TF_i) \\ \end{array} \right] \\ ({\phi _{i}^{13}})^\mathrm{T}= & {} \left[ \begin{array}{ccccc} P_1^\mathrm{T}(A_i-B K_{i}) &{} P_1^\mathrm{T} A_{hi} &{} P_1^\mathrm{T} B K_{i} &{} 0 &{} P_1^\mathrm{T} F_i \\ \end{array} \right] \end{aligned}$$

By using Schur complement, inequality (25) is equivalent to \(\xi ^ T \phi _{i}^{11} \xi (t) + h^2[(E\dot{x}(t))^\mathrm{T} Z_1 (E\dot{x}(s))] + h^2 [\dot{e}_{x}^\mathrm{T}(s) Z_2 \dot{e}_x(s)] < 0\).

If condition (25) holds, it follows from (41) that

$$\begin{aligned} \dot{V}(t) \le -\zeta \Vert \xi (t) \Vert ^2 + \delta \end{aligned}$$
(49)

where \(\zeta =\lambda _\mathrm{min}(-\phi _i)\)

It follows that \(\dot{V}(t) \leqslant 0\) for \( \zeta \Vert \xi (t) \Vert ^2 > \delta \), and according to Lyapunov stability theory, \(\xi (t)\) will converge to a small set \(\Psi = \{ \xi (t) / \Vert \xi (t) \Vert ^2 \le \frac{\delta }{\zeta } \}\) ; thus, \(\xi (t)\) is uniformly bounded.

The proof is completed.

Appendix B: Proof of Theorem 2

We can write inequality (26) in this form

$$\begin{aligned} \varLambda _{i}=\left[ \begin{array}{ccc} \varLambda _{i}^{11} &{} \varLambda _{i}^{12} &{} \varLambda _{i}^{13} \\ *&{} \varLambda _{i}^{22} &{} \varLambda _{i}^{23} \\ *&{} *&{} \varLambda _{i}^{33} \\ \end{array} \right] < 0 \end{aligned}$$
(50)

where

$$\begin{aligned} \varLambda _{i}^{11}= & {} \left[ \begin{array}{cc} \mathrm{sym}(P_1^\mathrm{T} A_{i}-P_1^\mathrm{T} B K_{i})+Q_1-E^\mathrm{T} Z_1 E &{} P_1^\mathrm{T} A_{hi}+E^\mathrm{T} Z_1 E \\ *&{} -(Q_1+E^\mathrm{T} Z_1 E) \\ \end{array} \right] \\ \varLambda _{i}^{12}= & {} \left[ \begin{array}{cccc} P_1^\mathrm{T} B K_{i} &{} 0 &{} P_1^\mathrm{T} F_i &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 \\ \end{array} \right] , \, \varLambda _{i}^{13}= \left[ \begin{array}{c} (A_i-B K_{i})^\mathrm{T} P_1 \\ A_{hi}^\mathrm{T} P_1 \end{array} \right] \end{aligned}$$
$$\begin{aligned} \varLambda _{i}^{22}= & {} \left[ \begin{array}{cccc} \mathrm{sym}(P_2 H_1 A_i-P_2 L_{1i} C) +Q_2-Z_2 &{} P_2(H_1 A_{hi}- L_{2i} C)+Z_2 &{} -\frac{1}{\sigma }(A_{hi}^\mathrm{T} H_1^\mathrm{T} P_2 - C^\mathrm{T} Y_{2i}^\mathrm{T})H_1 F_i &{} (H_1 A_{i}-L_{1i}C)^\mathrm{T} P_2 \\ *&{} -(Q_2+ Z_2) &{} -\frac{1}{\sigma }(A_{hi}^\mathrm{T} H_1^\mathrm{T} P_2 -C^\mathrm{T} Y_{2i}^\mathrm{T})H_1 F_i &{} (H_1 A_{hi}-L_{2i}C)^\mathrm{T} P_2 \\ *&{} *&{} -\frac{1}{\sigma }(H_1 F_{i})^\mathrm{T} P_2 (H_1 F_{i})+\frac{1}{\sigma \mu }M &{} (H_1 F_i)^\mathrm{T} P_2 \\ *&{} *&{} *&{} -P_2(h^2 Z_2)^{-1} P_2 \\ \end{array} \right] \\ \varLambda _{i}^{33}= & {} \left[ \begin{array}{c} -P_1^\mathrm{T}(h^2 Z_1)^{-1} P_1 \\ \end{array} \right] \end{aligned}$$

Consider the following symmetric matrix:

$$\begin{aligned} \mathbb {Z}= \left[ \begin{array}{ccc} \mathbb {Z}_{11} &{} 0 &{} 0\\ 0 &{} \mathbb {Z}_{22} &{} 0 \\ 0 &{} 0 &{} \mathbb {Z}_{33} \\ \end{array} \right] \end{aligned}$$

where \( \mathbb {Z}_{11} =\hbox {diag}(P_1^{-T},P_1^{-T}), \mathbb {Z}_{22} = \hbox {diag}(P_1^{-T},I,I,I)\) and \(\mathbb {Z}_{33} =P_1^{-T} \)

We can transform inequality (50) by pre- and post-multiplying it by \(\mathbb {Z}\), and we obtain this form:

$$\begin{aligned} \left[ \begin{array}{ccc} \mathbb {Z}_{11} \varLambda _{i}^{11} \mathbb {Z}_{11}^\mathrm{T} &{} \mathbb {Z}_{11} \varLambda _{i}^{12} \mathbb {Z}_{22}^\mathrm{T} &{} \mathbb {Z}_{11} \varLambda _{i}^{13} \mathbb {Z}_{33}^\mathrm{T}\\ *&{} \mathbb {Z}_{22} \varLambda _{i}^{22} \mathbb {Z}_{22}^\mathrm{T} &{} \mathbb {Z}_{22} \varLambda _{i}^{23} \mathbb {Z}_{33}^\mathrm{T} \\ *&{} *&{} \mathbb {Z}_{33} \varLambda _{i}^{33} \mathbb {Z}_{33}^\mathrm{T} \end{array} \right] <0 \end{aligned}$$
(51)

By using Lemma 2, we obtain the following inequalities:

$$\begin{aligned} -P_2(h^2 Z_2)^{-1} P_2\le & {} -2 \lambda _1 P_2+\lambda _1^2 h^2 Z_2 \end{aligned}$$
(52)
$$\begin{aligned} \mathbb {Z}_{33} \varLambda _{i}^{33} \mathbb {Z}_{33}^\mathrm{T}= & {} -P_1^{-T}(h^2 \widetilde{Z}_1)^{-1} P_1^{-1} \le -\lambda _2 (P_1^{-T}+P_1^{-1}) + \lambda _2^{2} h^2 \widetilde{Z}_1\qquad \quad \end{aligned}$$
(53)
$$\begin{aligned} \mathbb {Z}_{22} \varLambda _{i}^{22} \mathbb {Z}_{22}^\mathrm{T}\le & {} -\lambda _3 (\mathbb {Z}_{22}+\mathbb {Z}_{22}^\mathrm{T}) - \lambda _3^{2} (\varLambda _{i}^{22})^{-1} \end{aligned}$$
(54)

By applying Schur complement, we obtain the following inequality:

$$\begin{aligned} \left[ \begin{array}{cccc} \mathbb {Z}_{11} \varLambda _{i}^{11} \mathbb {Z}_{11}^\mathrm{T} &{} \mathbb {Z}_{11} \varLambda _{i}^{12} \mathbb {Z}_{22}^\mathrm{T} &{} \mathbb {Z}_{11} \varLambda _{i}^{13} \mathbb {X}_{33}^\mathrm{T} &{} 0 \\ * &{} -\lambda _3 (\mathbb {Z}_{22}+\mathbb {Z}_{22}^\mathrm{T})&{} \mathbb {Z}_{22} \varLambda _{i}^{23} \mathbb {Z}_{33}^\mathrm{T} &{} \lambda _3 I \\ * &{} * &{} \mathbb {Z}_{33} \varLambda _{i}^{33} \mathbb {Z}_{33}^\mathrm{T} &{} 0 \\ * &{} * &{} * &{} \varLambda _{i}^{22} \\ \end{array} \right] < 0 \end{aligned}$$
(55)

By posing \(X_1=P_1^{-1}, X_2=P_2, \widetilde{Z}_1=P_1^{-1}Z_1 P_1^{-T}, \widetilde{Q}_1=P_1^{-T}Q_1 P_1^{-1}, Y_{1i}=P_2 L_{1i}, Y_{2i}=P_2 L_{2i}\) and \(W_i=K_{i} P^{-1}_1\), we obtain inequality (30).

The proof is completed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kharrat, D., Gassara, H., El Hajjaji, A. et al. Adaptive Fuzzy Observer-Based Fault-Tolerant Control for Takagi–Sugeno Descriptor Nonlinear Systems with Time Delay. Circuits Syst Signal Process 37, 1542–1561 (2018). https://doi.org/10.1007/s00034-017-0624-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-017-0624-4

Keywords

Navigation