Skip to main content
Log in

A High-Efficiency CMOS Rectifier with Wide Harvesting Range and Wide Band Based on MPPT Technique for Low-Power IoT System Applications

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper describes a wide-harvesting-range, wide band, and high-efficiency complementary metal-oxide-semiconductor (CMOS) rectifier for low-power application in internet of things systems. Through maximum power point tracking, the proposed rectifier can dynamically detect the output voltage to enable switching between various circuit modes in order to achieve higher power conversion efficiency (PCE), even during sub-1-V operation. The experimental results for a \(0.18\hbox {-}\upmu \hbox {m}\) standard CMOS process with a 1.8-V power supply voltage demonstrate that the proposed rectifier can operate from a low voltage (0.7 V) to a high voltage (1.8 V) while maintaining high PCE. The proposed rectifier achieves a PCE improvement of 16% from the rectifier with a bootstrapping circuit under a peak alternating current (AC) input voltage of 0.85 V, and of 47.5% from the fully cross-coupled rectifier under a 1.8-V peak AC input voltage. Moreover, because its structure is insensitivity to the frequency response, the proposed rectifier provides a wide operating frequency range of 10–960 MHz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. M.A. Abouzied, K. Ravichandran, E. Sánchez-Sinencio, A fully integrated reconfigurable self-startup RF energy-harvesting system with storage capability. IEEE J. Solid State Circuits 52(3), 704–719 (2017)

    Article  Google Scholar 

  2. P.H. Chen, C.S. Wu, K.C. Lin, A 50 nW-to-10 mW output power tri-mode digital buck converter with self-tracking zero current detection for photovoltaic energy harvesting. IEEE J. Solid State Circuits 51(2), 523–532 (2016)

    Article  Google Scholar 

  3. S. Chatterjee, M. Tarique, A 100-nW sensitive RF-to-DC CMOS rectifier for energy harvesting applications, in International Conference on VLSI Design, (2016), pp. 557–558

  4. S.H. Chen, T.C. Huang, S.S. Ng, K.L. Lin, M.J. Du, Y.C. Kang, K.H. Chen, C.L. Wey, Y.H. Lin, C.C. Lee, J.R. Lin, T.Y. Tsai, A direct AC-DC and DC-DC cross-source energy harvesting circuit with analog iterating-based MPPT technique with 72.5% conversion efficiency and 94.6% tracking efficiency. IEEE Trans. Power Electron. 31(8), 5885–5899 (2016)

    Article  Google Scholar 

  5. O. Elsayed, M. Abouzied, E. Sánchez-Sinencio, A 540 \(\upmu \)W RF wireless receiver assisted by RF blocker energy harvesting for IoT applications with +18 dBm OB-IIP3, in IEEE Radio Frequency Integrated Circuits Symposium, (2016), pp. 230–233

  6. A. Facenetal, A. Boni, Power supply generation in CMOS passive UHF RFID tags, in Ph.D. Research in Microelectronics and Electronics, (2006), pp. 33–36

  7. M. Ghovanloo, K. Najafi, Fully integrated wideband high-current rectifiers for inductively powered devices. IEEE J. Solid State Circuits 39(11), 1976–1984 (2004)

    Article  Google Scholar 

  8. S. Guo, H. Lee, An efficiency-enhanced CMOS rectifier with unbalanced-biased comparators for transcutaneous-powered high-current implants. IEEE J. Solid State Circuits 44(6), 1796–1784 (2009)

    Article  Google Scholar 

  9. J. Hu, H. Min, A low power and high performance analog front end for passive RFID transponder, inIEEE Workshop on Automatic Identification Advanced Technologies, (2005), pp. 199–204

  10. P.H. Hsieh, C.H. Chou, T. Chiang, An RF energy harvester with 44.1% PCE at input available power of -12 dBm. IEEE Trans. Circuits Syst. I Regul. Pap. 62(6), 1528–1537 (2015)

    Article  MathSciNet  Google Scholar 

  11. S.S. Hashemi, M. Sawan, Y. Savaria, A high-efficiency low-voltage CMOS rectifier for harvesting energy in implantable devices. IEEE Trans. Biomed. Circuits Syst. 6(4), 326–335 (2012)

    Article  Google Scholar 

  12. Z. Hameed, K. Moez, A 3.2 V -15 dBm adaptive threshold-voltage compensated RF energy harvester in 130 nm CMOS. IEEE Trans. Circuits Syst. I Regul. Pap. 62(4), 948–956 (2015)

    Article  MathSciNet  Google Scholar 

  13. N. Jose, N. John, P. Jain, P. Raja, T. V. Prabhakar, K. J. Vinoy, RF powered integrated system for IoT applications, inIEEE International New Circuits and Systems Conference, (2015), pp. 1–4

  14. O.U. Khan, D.D. Wentzloff, 8.1nJ/b 2.4 GHz short-range communication receiver in 65 nm CMOS. IEEE Trans. Circuits Syst. I Regul. Pap. 62(7), 1854–1862 (2015)

    Article  Google Scholar 

  15. U. Karthaus, M. Fischer, Fully integrated passive UHF RFID transponder IC with 16.7-mW minimum RF input power. IEEE J. Solid State Circuits 38(10), 1602–1608 (2003)

    Article  Google Scholar 

  16. H.M. Lee, M. Ghovanloo, An integrated power-efficient active rectifier with offset-controlled high speed comparators for inductively powered applications. IEEE Trans. Circuits Syst. I Regul. Pap. 58(8), 1749–1760 (2011)

    Article  MathSciNet  Google Scholar 

  17. H. M. Lee, M. Ghovanloo, Fully integrated power-efficient AC-to-DC converter design in inductively-powered biomedical applications, in IEEE Custom Integrated Circuits Conference, (2011), pp. 1–8

  18. H. M. Lee, M. Ghovanloo, An adaptive reconfigurable active voltage doubler/rectifier for extended-range inductive power transmission, in IEEE International Solid State Circuits Conference, (2012), pp. 286–288

  19. L.X. Liu, J.C. Mu, N. Ma, W. Tu, Z.M. Zhu, Y.T. Yang, An ultra-low-power integrated RF energy harvesting system in 65-nm CMOS process. Circuits Syst. Signal Process. 35(2), 421–441 (2016)

    Article  Google Scholar 

  20. S.Y. Lee, J.H. Hong, C.H. Hsieh, M.C. Liang, J.Y. Kung, A low-power 13.56 MHz RF front-end circuit for implantable biomedical devices. IEEE Trans. Biomed. Circuits Syst. 7(3), 256–265 (2013)

    Article  Google Scholar 

  21. T. Le, K. Mayaram, T. Fiez, Efficient far-field radio frequency energy harvesting for passively powered sensor networks. IEEE J. Solid State Circuits 43(5), 1287–1302 (2008)

    Article  Google Scholar 

  22. X. Liu, L. Huang, K. Ravichandran, E. Sánchez-Sinencio, A highly efficient reconfigurable charge pump energy harvester with wide harvesting range and two-dimensional MPPT for Internet of Things. IEEE J. Solid State Circuits 51(5), 1302–1312 (2016)

    Article  Google Scholar 

  23. X. Liu, E. Sánchez-Sinencio, An 86% efficiency 12 \(\upmu \)W self-sustaining PV energy harvesting system with hysteresis regulation and time-domain MPPT for IOT smart nodes. IEEE J. Solid State Circuits 50(6), 1424–1437 (2015)

    Article  Google Scholar 

  24. Y. Lu, H. Dai, M. Huang, M.K. Law, S.W. Sin, S.P.U, R.P. Martins, A wide input range dual-path CMOS rectifier for RF energy harvesting. IEEE Trans. Circuits Syst. II, Express Briefs 64(4), 166–170 (2017)

  25. Y. Li, Z. Zhu, Y. Yang, Y. Sun, X. Wang, A novel interface circuit with 99.2% MPPT accuracy and 1.3% THD for energy harvesting. J. Circuits Syst. Comput. 26(11), 1750176 (2017)

    Article  Google Scholar 

  26. W. W. Y. Lau, L. Siek, A 2.45GHz CMOS rectifier for RF energy harvesting, in IEEE Wireless Power Transfer Conference, (2016), pp. 1–3

  27. A.K. Moghaddam, J.H. Chuah, H. Ramiah, J. Ahmadian, P.I. Mak, R.P. Martins, A 73.9% efficiency CMOS rectifier using a lower DC feeding (LDCF) self-body-biasing technique for far-field RF energy-harvesting systems. IEEE Trans. Circuits Syst. I Regul. Pap. 64(4), 992–1002 (2017)

    Article  Google Scholar 

  28. D. Michelon, E. Bergeret, A. D. Giacomo, P. Pannier, RF energy harvester with sub-threshold step-up converter, in IEEE International Conference on RFID, (2016), pp. 1–8

  29. M. Mahmoud, A. B. Abdel-Rahman, G. A. Fahmy, A. Aliam, H. Jia, R. K. Pokharel, Dynamic threshold compensated, low voltage CMOS energy harvesting rectifier for UHF applications, inIEEE International Midwest Symposium on Circuits and Systems, (2016), pp. 1–4

  30. X.H. Qian, M.S. Cheng, C.Y. Wu, A CMOS 13.56-MHz high-efficiency low-dropout-voltage 40-mW inductive link power supply utilizing on-chip delay-compensated voltage doubler rectifier and multiple LDOs for implantable medical devices. IEEE J. Solid State Circuits 49(11), 2397–2407 (2014)

    Article  Google Scholar 

  31. P. Rakers, L. Connell, T. Collins, D. Russell, Secure contactless smartcard ASIC with DPA protection. IEEE J. Solid State Circuits 36(3), 559–565 (2001)

    Article  Google Scholar 

  32. ST. Wireless connectivity for IoT applications. http://www.st.com/content/ccc/resource/sales_and_marketing/promotional_material/brochure/d7/74/dc/eb/b4/f5/40/d5/brwireless_web.pdf/files/brwireless_web.pdf/jcr:content/translations/en.brwireless_web.pdf

  33. J. Wang, Z. Yang, Z. Zhu, Y. Yang, A high efficiency self-powered rectifier for piezoelectric energy harvesting systems. J. Circuits Syst. Comput. 25(12), 1650164 (2016)

    Article  Google Scholar 

  34. J. Yi, W.H. Ki, C.Y. Tsui, Analysis and design strategy of UHF micro-power CMOS rectifiers for micro-sensor and RFID applications. IEEE Trans. Circuits Syst. I Regul. Pap. 54(1), 153–166 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Science and Technology (MOST), Taiwan, under Grant MOST 106-2221-E-017-012. The authors thank the National Chip Implementation Center (CIC) of Taiwan for chip fabrication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Lung Lo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lo, YL., Chuang, YH. A High-Efficiency CMOS Rectifier with Wide Harvesting Range and Wide Band Based on MPPT Technique for Low-Power IoT System Applications. Circuits Syst Signal Process 36, 5019–5040 (2017). https://doi.org/10.1007/s00034-017-0643-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-017-0643-1

Keywords

Navigation