Skip to main content
Log in

Chained-Function Filter Synthesis Based on the Legendre Polynomials

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

A new kind of filter called Legendre chained-function (LCF) filter with characteristic function given by the product of low-degree Legendre orthogonal polynomials (seed functions) is studied in this paper. LCF filter magnitude response exhibits unequal ripple level in the passband compared to Chebyshev chained-function filter with identical edge ripple factor at the passband edge. A proper combination of seed functions, i.e., a product of them, is used to control the maximum ripple in the passband, which affects the return loss, selectivity and a group delay characteristics of a filter. By selecting one of the possible combinations of seed functions (thus obtaining various degrees of freedom in filter design), filters with improved performances compared to traditional approximation techniques can be obtained. The degrees of freedom increase if the degree of filter increases. Compared to existing Chebyshev chained-function (CCF) filters, whose performances are also presented, and Butterworth function filters as a special case of both LCF and CCF filters, the new family of LCF filters has many advantages. A table summarizing properties of CCF and LCF filters is given for design purpose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. The loaded quality factor \(Q_\mathrm{L}\), defined as the ratio of the magnitude of the resonator response at resonance frequency to the total circuit resistance, can be calculated for each resonator using [19]:

    $$\begin{aligned} 1/Q_\mathrm{L}=1/Q_\mathrm{u}+1/Q_\mathrm{e} \end{aligned}$$

    where \(Q_\mathrm{e}\) is external Q-factor.

  2. Approximately 99.7% of the data values lie within three standard deviations from the mean.

References

  1. M. Abramowitz, I. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. National Bureau of Standards Applied Mathematics Series 55, 9th edn. (Dover, New York, 1972)

    MATH  Google Scholar 

  2. A. Budak, P. Aronhime, Transitional Butterworth–Chebyshev filters. IEEE Trans. Circuits Theory 18(5), 413–415 (1971)

    Article  Google Scholar 

  3. S. Butterworth, On the theory filter amplifier. Exp. Wirel. Radio Eng. 7, 536–541 (1930)

    Google Scholar 

  4. C.E. Chrisostomidis, S. Lucyszyn, On the theory of chained-function filters. IEEE Trans. Microw. Theory Tech. 53(10), 3142–3151 (2005). doi:10.1109/TMTT.2005.855358

    Article  Google Scholar 

  5. M.T. Chryssomallis, J.N. Sahalos, Filter synthesis using products of Legendre polynomials. Electr. Eng. 81(6), 419–424 (1999)

    Article  Google Scholar 

  6. S.B. Cohn, Dissipation loss in multiple-coupled-resonator filters. Proc. IRE 47(8), 1342–1348 (1959). doi:10.1109/JRPROC.1959.287201

    Article  Google Scholar 

  7. S. Darlington, Synthesis of reactance 4-poles which produce prescribed insertion loss characteristics: including special applications to filter design. J. Math. Phys. 18(1–4), 257–353 (1939). doi:10.1002/sapm1939181257

    Article  MathSciNet  Google Scholar 

  8. H.G. Dimopoulos, Analog Electronic Filters: Theory, Design and Synthesis (Springer, Dordrecht, 2012)

    Book  Google Scholar 

  9. M. Guglielmi, G. Connor, Chained function filters. IEEE Microw. Guided Wave Lett. 7(12), 390–392 (1997). doi:10.1109/75.645181

    Article  Google Scholar 

  10. J.S. Hong, M.J. Lancaster, Microstrip Filters for RF/Microwave Applications (Wiley, New York, 2001)

    Book  Google Scholar 

  11. A.B. Jayyousi, M.J. Lancaster, F. Huang, Filtering functions with reduced fabrication sensitivity. IEEE Microw. Wirel. Compon. Lett. 15(5), 360–362 (2005). doi:10.1109/LMWC.2005.847713

    Article  Google Scholar 

  12. A. Kumar, A. Verma, Design of Bessel low-pass filter using dgs for RF/microwave applications. Int. J. Electron. 103(9), 1460–1474 (2016). doi:10.1080/00207217.2015.1126860

    Google Scholar 

  13. S. Kumari, S. Gupta, N. Pandey, R. Pandey, R. Anurag, LC-ladder filter systematic implementation by OTRA. Eng. Sci. Technol. 19(4), 1808–1814 (2016). doi:10.1016/j.jestch.2016.10.003

    Google Scholar 

  14. Z.D. Milosavljević, M.V. Gmitrovic, Design of maximally selective generalized Chebyshev filters. Circuits Syst. Signal Process. 21(2), 195–205 (2002). doi:10.1007/s00034-002-2006-8

    Article  MathSciNet  MATH  Google Scholar 

  15. J. Neirynck, L. Milić, Equal ripple tolerance characteristics. Int. J. Circuit Theory Appl. 4(1), 99–104 (1976). doi:10.1002/cta.4490040110

    Article  Google Scholar 

  16. H. Orchard, Loss sensitivities in singly and doubly terminated filters. IEEE Trans. Circuits Syst. 26(5), 293–297 (1979). doi:10.1109/TCS.1979.1084643

    Article  MATH  Google Scholar 

  17. H.J. Orchard, Inductorless filters. Electron. Lett. 2(6), 224–225 (1966)

    Article  Google Scholar 

  18. D. Packiaraj, K. Vinoy, M. Ramesh, A. Kalghatgi, Design of compact low pass filter with wide stop band using tri-section stepped impedance resonator. AEÜ Int. J. Electron. Commun. 65(12), 1012–1014 (2011). doi:10.1016/j.aeue.2011.03.018

    Article  Google Scholar 

  19. D.M. Pozar, Microwave Engineering, 4th edn. (Wiley, New York, 2011)

    Google Scholar 

  20. S. Prasad, L.G. Stolarczyk, J.R. Jackson, E.W. Kang, Filter synthesis using Legendre polynomials. Proc. IEE 114(8), 1063–1064 (1967)

    Google Scholar 

  21. S.C.D. Roy, Modified Chebyshev lowpass filters. Int. J. Circuit Theory Appl. 38(5), 543–549 (2010). doi:10.1002/cta.585

    Google Scholar 

  22. K. Srisathit, Simple technique to extend the bandwidth of parallel-coupled microstrip bandpass filter, in 9th International Symposium on Communications and Information Technology, 2009. ISCIT 2009 (2009), pp. 901–914

  23. N. Stamenković, V. Stojanović, On the design transitional Legendre–Butterworth filters. Int. J. Electron. Lett. 2(3), 186–195 (2014). doi:10.1080/00207217.2014.894138

    Article  Google Scholar 

  24. S. Winder, Analog and Digital Filter Design, 2nd edn. (Elsevier Science, Woburn, 2002)

    Google Scholar 

  25. Y.S. Zhu, W.K. Chen, On the design of Butterworth or Chebyshev broad-band impedance-matching ladder networks. Circuits Syst. Signal Process. 9(1), 55–73 (1990). doi:10.1007/BF01187721

    Article  MathSciNet  Google Scholar 

  26. A.I. Zverev, Handbook of Filter Synthesis (Wiley, New York, 1967)

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank Professor V. S. Stojanović of the University of Niš, Niš, Serbia for his valuable comments and suggestions. The work presented here was partly supported by the Serbian Ministry of Education and Science in the frame of the Projects TR 32009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikola Stojanović.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stojanović, N., Stamenković, N. & Krstić, I. Chained-Function Filter Synthesis Based on the Legendre Polynomials. Circuits Syst Signal Process 37, 2001–2020 (2018). https://doi.org/10.1007/s00034-017-0651-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-017-0651-1

Keywords

Navigation