Skip to main content
Log in

Sparse Approximate Reconstruction Decomposed by Two Optimization Problems

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

We propose a novel sparse signal reconstruction method aiming to directly minimize \(\ell _{0}\)-quasinorm. Based on the smoothed \(\ell _{0}\)-quasinorm, we show that there exists an unconstrained optimization problem such that both this problem and the basis pursuit problem are subproblems of the \(\ell _{0}\) minimization problem. Moreover, we can obtain a sparse solution to the \(\ell _{0}\) minimization by solving these two subproblems. In addition, we establish the relation between solutions to the \(\ell _{0}\) minimization and the least square solutions of a linear system. Finally, we present some numerical experiments to illustrate our results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Md.Z. Ali Bhotto, M.O. Ahmad, M.N.S. Swamy, An improved fast iterative shrinkage thresholding algorithm for image deblurring. SIAM J. Imaging Sci. 8(3), 1640–1657 (2015)

  2. A.S. Bandeira, D.G. Mixon, Certifying the restricted isometry property is hard. IEEE Trans. Inf. Theory 59(6), 3448–3450 (2013). doi:10.1109/TIT.2013.2248414

    Article  MathSciNet  MATH  Google Scholar 

  3. P. Bloomfield, S. William, Least Absolute Deviations: Theory, Applications and Algorithms (Springer, New York, 2012)

    MATH  Google Scholar 

  4. T. Blumensath, M.E. Davies, Iterative thresholding for sparse approximations. J. Fourier Anal. Appl. 14(5–6), 629–654 (2008). doi:10.1007/s00041-008-9035-z

    Article  MathSciNet  MATH  Google Scholar 

  5. T. Blumensath, M.E. Davies, Iterative hard thresholding for compressed sensing. Appl. Comput. Harmon. Anal. 27(3), 265–274 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. E.J. Candès, M.B. Wakin, An introduction to compressive sampling. IEEE Signal Proc. Mag. 25(2), 21–30 (2008). doi:10.1109/MSP.2007.914731

    Article  Google Scholar 

  7. E.J. Candès, K.R. Justin, Quantitative robust uncertainty principles and optimally sparse decompositions. Found. Comput. Math. 6(2), 227–254 (2006). doi:10.1007/s10208-004-0162-x

    Article  MathSciNet  MATH  Google Scholar 

  8. E.J. Candès, K.J. Justin, T. Tao, Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52(2), 489–509 (2006). doi:10.1109/TIT.2005.862083

    Article  MathSciNet  MATH  Google Scholar 

  9. E.J. Candès, K.R. Justin, T. Tao, Stable signal recovery from incomplete and inaccurate measurements. Commun. Pure Appl. Math. 59(8), 1207–1223 (2006). doi:10.1002/cpa.20124

    Article  MathSciNet  MATH  Google Scholar 

  10. E.J. Candès, T. Tao, Decoding by linear programming. IEEE Trans. Inf. Theory 51(12), 4203–4215 (2005). doi:10.1109/TIT.2005.858979

    Article  MathSciNet  MATH  Google Scholar 

  11. E.J. Candès, T. Tao, Near-optimal signal recovery from random projections: universal encoding strategies? IEEE Trans. Inf. Theory 52(12), 5406–5425 (2006). doi:10.1109/TIT.2006.885507

    Article  MathSciNet  MATH  Google Scholar 

  12. S.S. Chen, D.L. Donoho, M.A. Saunders, Atomic decomposition by basis pursuit. SIAM J. Sci. Comput. 20(1), 33–61 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. D.L. Donoho, Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006). doi:10.1109/TIT.2006.871582

    Article  MathSciNet  MATH  Google Scholar 

  14. D.L. Donoho, De-noising by soft-thresholding. IEEE Trans. Inf. Theory 41(3), 613–627 (1995). doi:10.1109/18.382009

    Article  MathSciNet  MATH  Google Scholar 

  15. D.L. Donoho, M. Elad, Optimally sparse representation in general (nonorthogonal) dictionaries via \(l_{1}\) minimization. Proc. Natl. Acad. Sci. 100(5), 2197–2202 (2003). doi:10.1073/pnas.0437847100

    Article  MathSciNet  MATH  Google Scholar 

  16. D.L. Donoho, X.M. Huo, Uncertainty principles and ideal atomic decomposition. IEEE Trans. Inf. Theory 47(7), 2845–2862 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. M.F. Duarte, R.G. Baraniuk, Spectral compressive sensing. Appl. Comput. Harmon. Anal. 35(1), 111–129 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. S. Foucart, H. Rauhut, A Mathematical Introduction to Compressive Sensing (Birkhäuser, Basel, 2013)

    Book  MATH  Google Scholar 

  19. I.F. Gorodnitsky, D.R. Bhaskar, Sparse signal reconstruction from limited data using FOCUSS: a re-weighted minimum norm algorithm. IEEE Trans. Signal Process. 45(3), 600–616 (1997). doi:10.1109/78.558475

    Article  Google Scholar 

  20. X.L. Huang, Y.P. Liu, L. Shi, Two-level \(\ell _{1}\) minimization for compressed sensing. Signal Process. 108, 459–475 (2015)

    Article  Google Scholar 

  21. S. Jalali, M. Arian, From compression to compressed sensing. Appl. Comput. Harmon. Anal. 40(2), 352–385 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. F. Kittaneh, Singular values of companion matrices and bounds on zeros of polynomials. SIAM J. Matrix Anal. Appl. 16(1), 333–340 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  23. S.G. Mallat, Z.F. Zhang, Matching pursuits with time-frequency dictionaries. IEEE Trans. Signal Process. 41(12), 3397–3415 (1993). doi:10.1109/78.258082

    Article  MATH  Google Scholar 

  24. H. Mansour, S. Rayan, Recovery analysis for weighted \(\ell _{1}\)-minimization using the null space property. Appl. Comput. Harmon. Anal. 43(1), 23–38 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  25. H. Mohimani, B.Z. Massoud, C. Jutten, A fast approach for overcomplete sparse decomposition based on smoothed \(\ell _{0}\) norm. IEEE Trans. Signal Process. 57(1), 289–301 (2009). doi:10.1109/TSP.2008.2007606

    Article  MathSciNet  Google Scholar 

  26. B.K. Natarajan, Sparse approximate solutions to linear systems. SIAM J. Comput. 24(2), 227–234 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  27. D. Needell, J.A. Tropp, CoSaMP: iterative signal recovery from incomplete and inaccurate samples. Appl. Comput. Harmon. Anal. 26(3), 301–321 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. S.Z. Tao, B. Daniel, S.Z. Zhang, Local linear convergence of ISTA and FISTA on the LASSO problem. SIAM J. Optim. 26(1), 313–336 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  29. R. Tibshirani, Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B (Methodol.) 58(1), 267–288 (1996)

    MathSciNet  MATH  Google Scholar 

  30. J.A. Tropp, A.C. Gilbert, Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. Inf. Theory 53(12), 4655–4666 (2007). doi:10.1109/TIT.2007.909108

    Article  MathSciNet  MATH  Google Scholar 

  31. Y. Tsaig, D.L. Donoho, Extensions of compressed sensing. Signal Process. 86(3), 549–571 (2006)

    Article  MATH  Google Scholar 

  32. B. Wang, L.L. Hu, J.Y. An et al., Recovery error analysis of noisy measurement in compressed sensing. Circ. Syst. Signal Process. 36(1), 137–155 (2017). doi:10.1007/s00034-016-0296-5

    Article  MathSciNet  MATH  Google Scholar 

  33. Y. Wang, X.Q. Xiang et al., Compressed sensing based on trust region method. Circ. Syst. Signal Process. 36(1), 202–218 (2017). doi:10.1007/s00034-016-0299-2

    Article  MATH  Google Scholar 

  34. D. Wei, Y. Li, Generalized sampling expansions with multiple sampling rates for lowpass and bandpass signals in the fractional fourier transform domain. IEEE Trans. Signal Process. 64(18), 4861–4874 (2016). doi:10.1109/TSP.2016.2560148

    Article  MathSciNet  Google Scholar 

  35. D.L. Wu, W.P. Zhu, N.S. Swamy, The theory of compressive sensing matching pursuit considering time-domain noise with application to speech enhancement. IEEE/ACM Trans. Audio Speech Lang. Process. 22(3), 682–696 (2014). doi:10.1109/TASLP.2014.2300336

    Article  Google Scholar 

Download references

Acknowledgements

We thank the anonymous referees, associate editors, and editor-in-chief for their thoughtful and insightful comments, which improved the paper greatly. The research was supported partially by National Natural Science Foundation of China (Grant Nos. 10871056 and 10971150).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing Tao Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Wang, X.T. Sparse Approximate Reconstruction Decomposed by Two Optimization Problems. Circuits Syst Signal Process 37, 2164–2178 (2018). https://doi.org/10.1007/s00034-017-0667-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-017-0667-6

Keywords

Navigation