Skip to main content
Log in

Exploring a Novel Methodology for DC Analysis in Memristive Circuits with Multiple Operating Points

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

The memristor and the memristive systems have represented a challenge to be incorporated into a simulation procedure in order to carry out novel applications. The discovery of the physical memristor by the HP Labs has caused widespread interest for modeling the memristive behavior in order to combine this new fundamental circuit element with traditional devices. DC domain analysis represents a fundamental stage in the circuit simulators because the DC operating points are used as starting points in other analysis domains. In this work, the DC response of mathematical memristive systems is explored in order to recognize different scenarios according to the nature of the memristive variable. The piecewise linear formulation has been used in order to establish the memristive phenomenon in the device. As a result of this exploration, a novel DC modeling methodology for memristive systems is introduced. This methodology is capable of generating current–voltage branch relationships that represent the memristive behavior of the device. The memristive model proposed is characterized in order to determinate the impact of the variables on the memristive behavior. Moreover, the existence of multiple DC operation points (MOPs) is treated and the conditions for the occurrence of MOPs are established by two cases of study. Finally, the new contributions of this work compared to previous work are presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. S. Adhikari, M. Sah, H. Kim, L. Chua, Three fingerprints of memristor. IEEE Trans. Circuits Syst. I Regul. Pap. 60(11), 3008–3021 (2013)

    Article  Google Scholar 

  2. R. Burden, J. Faires, Numerical Analysis (Cengage Learning, Boston, 2004)

    MATH  Google Scholar 

  3. L. Chua, Memristor—the missing circuit element. IEEE Trans. Circuit Theory 18(5), 507–519 (1971)

    Article  Google Scholar 

  4. L. Chua, A.-C. Deng, Canonical piecewise-linear modeling. IEEE Trans. Circuits Syst. 33(5), 511–525 (1986)

    Article  Google Scholar 

  5. L. Chua, S.M. Kang, Memristive devices and systems. Proc. IEEE 64(2), 209–223 (1976)

    Article  MathSciNet  Google Scholar 

  6. L. Chua, S.M. Kang, Section-wise piecewise-linear functions: canonical representation, properties, and applications. Proc. IEEE 65(6), 915–929 (1977)

    Article  Google Scholar 

  7. L. Chua, P. Lin, Computer-Aided Analysis of Electronic Circuits: Algorithms and Computational Techniques. Prentice-Hall Series in Electrical and Computer Engineering (Prentice-Hall, Englewood Cliffs, 1975)

    Google Scholar 

  8. L. Chua, A. Ushida, A switching-parameter algorithm for finding multiple solutions of nonlinear resistive circuits. Int. J. Circuit Theory Appl. 4(3), 215–239 (1976)

    Article  MATH  Google Scholar 

  9. G. Diaz-Arango, A. Sarmiento-Reyes, L. Hernández-Martínez, H. Vázquez-Leal, D. D. Lopez-Hernandez, A. Marín-Hernández, Path optimization for terrestrial robots using homotopy path planning method, in 2015 IEEE International Symposium on Circuits and Systems (ISCAS) (2015), pp. 2824–2827

  10. A. Emelyanov, V. Demin, I. Antropov, G. Tselikov, Z. Lavrukhina, P. Kashkarov, Effect of the thickness of the \(\text{ tio }_{x}/\text{ tio }_{2}\) layers on their memristor properties. Tech. Phys. 60(1), 112–115 (2015). ISSN 1063-7842

    Article  Google Scholar 

  11. K. Eshraghian, K. Rok Cho, O. Kavehei, S.-K. Kang, D. Abbott, S.-M. S. Kang, Memristor MOS content addressable memory (MCAM): hybrid architecture for future high performance search engines. ArXiv e-prints (2010)

  12. E. Gale, B. de Lacy Costello, V. Erokhin, A. Adamatzky, The short-term memory (d.c. response) of the memristor demonstrates the causes of the memristor frequency effect. ArXiv e-prints (2014)

  13. S.H. Jo, T. Chang, I. Ebong, B.B. Bhadviya, P. Mazumder, W. Lu, Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett 10(4), 1297–1301 (2010)

    Article  Google Scholar 

  14. G. Liu, L. Fang, N. Li, B. cai Sui, Z. K. Duan, New behavioral modeling method for crossbar-based memristor, in 2010 Asia Pacific Conference on Postgraduate Research in Microelectronics and Electronics (PrimeAsia) (2010), pp. 356–359

  15. G. Martinsen, S. Grimnes, C. Lutken, G. Johnsen, Memristance in human skin. J. Phys. Conf. Ser. 224(1), 012071 (2010)

    Article  Google Scholar 

  16. A. Mazady, M. Anwar, Memristor: Part II-DC, transient, and RF analysis. IEEE Trans. Electron Devices 61(4), 1062–1070 (2014)

    Article  Google Scholar 

  17. J. Ogrodzki, Circuit Simulation Methods and Algorithms. Electronic Engineering Systems (Taylor & Francis, New York, 1994)

    MATH  Google Scholar 

  18. Y.V. Pershin, S. La Fontaine, M. Di Ventra, Memristive model of amoeba learning. Phys. Rev. E 80, 021926 (2009)

    Article  Google Scholar 

  19. A. Radwan, M. Zidan, K. Salama, HP memristor mathematical model for periodic signals and DC, in 2010 53rd IEEE International Midwest Symposium on Circuits and Systems (MWSCAS) (2010), pp. 861–864

  20. G.S. Rose, J. Rajendran, H. Manem, R. Karri, R.E. Pino, Leveraging memristive systems in the construction of digital logic circuits. Proc. IEEE 100(6), 2033–2049 (2012). ISSN 0018-9219

    Article  Google Scholar 

  21. A. Schwarz, Computer-aided design of microelectronic circuits and systems: general introduction and analog-circuit aspects, in Computer-Aided Design of Microelectronic Circuits and Systems: Fundamentals, Methods, and Tools (Academic Press, Cambridge, 1987)

  22. S. Shin, L. Zheng, G. Weickhardt, S. Cho, S.-M. Kang, Compact circuit model and hardware emulation for floating memristor devices. IEEE Circuits Syst. Mag. 13(2), 42–55 (2013)

    Article  Google Scholar 

  23. D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, The missing memristor found. Nature 453(7191), 80–83 (2008)

    Article  Google Scholar 

  24. D. Torres-Muñoz, H. Vázquez-Leal, L. Hernández-Martínez, A. Sarmiento-Reyes, Improved spherical continuation algorithm with application to the double-bounded homotopy (dbh). Comput. Appl. Math. 33(1), 147–161 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. D. Torres-Muñoz, L. Hernández-Martínez, H. Vázquez-Leal, Spherical continuation algorithm with spheres of variable radius to trace homotopy curves. Int. J. Appl. Comput. Math. 2(3), 421–433 (2016)

    Article  MathSciNet  Google Scholar 

  26. W. Tzong-Mou, Solving the nonlinear equations by the Newton-homotopy continuation method with adjustable auxiliary homotopy function. Appl. Math. Comput. 173(1), 383–388 (2006)

    MathSciNet  MATH  Google Scholar 

  27. A. Ushida, Y. Yamagami, Y. Nishio, I. Kinouchi, Y. Inoue, An efficient algorithm for finding multiple DC solutions based on the spice-oriented Newton homotopy method. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 21(3), 337–348 (2002)

    Article  Google Scholar 

  28. R. Waser, M. Aono, Nanoionics-based resistive switching memories. Nat. Mater. 6(11), 833–840 (2007)

    Article  Google Scholar 

  29. S. Wolfram, The MATHEMATICA ® Book, Version 4 (Cambridge University Press, Cambridge, 1999)

    MATH  Google Scholar 

  30. J.J. Yang, M.D. Pickett, X. Li, D.A.A. Ohlberg, R.S. Williams, D.R. Stewart, Memristive switching mechanism for metal/oxide/metal nanodevices. Nature 3(7), 429–433 (2008)

    Google Scholar 

  31. Y. Yilmaz, P. Mazumder, Image processing by a programmable grid comprising quantum dots and memristors. IEEE Trans. Nanotechnol. 12(6), 879–887 (2013). ISSN 1536-125X

    Article  Google Scholar 

  32. L. Zhang, Z. Chen, J. Joshua Yang, B. Wysocki, N. McDonald, Y. Chen, A compact modeling of \(\text{ TiO }_{2}-\text{ TiO }_{2-x}\) memristor. Appl. Phys. Lett. 102(15), 153503–153503-4 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Hernández-Mejía.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernández-Mejía, C., Torres-Muñoz, D. & Vázquez-Leal, H. Exploring a Novel Methodology for DC Analysis in Memristive Circuits with Multiple Operating Points. Circuits Syst Signal Process 37, 2227–2249 (2018). https://doi.org/10.1007/s00034-017-0677-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-017-0677-4

Keywords

Navigation