Skip to main content
Log in

New Conditions on Stable Recovery of Weighted Sparse Signals via Weighted \(l_1\) Minimization

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

A problem of recovering weighted sparse signals via weighted \(l_1\) minimization has recently drawn considerable attention with application to function interpolation. The weighted robust null space property (NSP) of order s and the weighted restricted isometry property (RIP) with the weighted 3s-RIP constant \(\delta _{\mathbf {w},3s}\) have been proposed and proved to be sufficient conditions for guaranteeing stable recovery of weighted s-sparse signals. In this paper, we propose two new sufficient conditions, i.e., the weighted \(l_q\)-robust NSP of order s and the weighted RIP with \(\delta _{\mathbf {w},2s}\). Different from the existing results, the weighted \(l_q\)-robust NSP of order s is more general and weaker than the weighted robust NSP of order s, and the weighted RIP is characterized by \(\delta _{\mathbf {w},2s}\) instead of \(\delta _{\mathbf {w},3s}\). Accordingly, the reconstruction error estimations based on the newly proposed recovery conditions are also derived, respectively. Moreover, we demonstrate that the weighted RIP with small \(\delta _{\mathbf {w},2s}\) implies the weighted \(l_1\)-robust NSP of order s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. A. Aldroubi, X. Chen, A.M. Powell, Perturbations of measurement matrices and dictionaries in compressed sensing. Appl. Comput. Harmon. Anal 33(2), 282–291 (2012). doi:10.1016/j.acha.2011.12.002

    Article  MathSciNet  MATH  Google Scholar 

  2. B. Bah, Weighted sparse recovery with expanders. arXiv preprint arXiv:1604.01067 (2016)

  3. B. Bah, R. Ward, The sample complexity of weighted sparse approximation. IEEE Trans. Signal Process. 64(12), 3145–3155 (2016). doi:10.1109/TSP.2016.2543211

    Article  MathSciNet  Google Scholar 

  4. J.D. Blanchard, A. Thompson, On support sizes of restricted isometry constants. Appl. Comput. Harmon. Anal. 29(3), 382–390 (2010). doi:10.1016/j.acha.2010.05.001. http://www.sciencedirect.com/science/article/pii/S1063520310000849

  5. T.T. Cai, L. Wang, G. Xu, New bounds for restricted isometry constants. IEEE Trans. Inform. Theory 56(9), 4388–4394 (2010). doi:10.1109/TIT.2010.2054730

    Article  MathSciNet  MATH  Google Scholar 

  6. T.T. Cai, A. Zhang, Sharp RIP bound for sparse signal and low-rank matrix recovery. Appl. Comput. Harmon. Anal. 35(1), 74–93 (2013). doi:10.1016/j.acha.2012.07.010

    Article  MathSciNet  MATH  Google Scholar 

  7. E.J. Candès, The restricted isometry property and its implications for compressed sensing. C. R. Math. Acad. Sci. Paris 346(9–10), 589–592 (2008). doi:10.1016/j.crma.2008.03.014

    Article  MathSciNet  MATH  Google Scholar 

  8. E.J. Candes, T. Tao, Decoding by linear programming. IEEE Trans. Inform. Theory 51(12), 4203–4215 (2005). doi:10.1109/TIT.2005.858979

    Article  MathSciNet  MATH  Google Scholar 

  9. G. Chen, J. Tang, S. Leng, Prior image constrained compressed sening (PICCS): a method to accurately reconstruct dynamic CT images from highly undersampled projection data sets. Med. Phys. 35(2), 660–663 (2008)

    Article  Google Scholar 

  10. W. Chen, Y. Li, Recovery of signals under the condition on RIC and ROC via prior support information. arXiv preprint arXiv:1603.03465 (2016)

  11. W. Chen, Y. Li, Recovery of signals under the high order RIP condition via prior support information. arXiv preprint arXiv:1603.03464 (2016)

  12. A. Cohen, W. Dahmen, R. DeVore, Compressed sensing and best \(k\)-term approximation. J. Am. Math. Soc. 22(1), 211–231 (2009). doi:10.1090/S0894-0347-08-00610-3

    Article  MathSciNet  MATH  Google Scholar 

  13. A. Cohen, R. DeVore, Approximation of high-dimensional parametric PDEs. Acta Numer. 24, 1–159 (2015). doi:10.1017/S0962492915000033

    Article  MathSciNet  MATH  Google Scholar 

  14. M.E. Davies, R. Gribonval, Restricted isometry constants where \(l^{p}\) sparse recovery can fail for \(0<p\le 1\). IEEE Trans. Inform. Theory 55(5), 2203–2214 (2009). doi:10.1109/TIT.2009.2016030

    Article  MathSciNet  MATH  Google Scholar 

  15. D.L. Donoho, Compressed sensing. IEEE Trans. Inform. Theory 52(4), 1289–1306 (2006). doi:10.1109/TIT.2006.871582

    Article  MathSciNet  MATH  Google Scholar 

  16. Y.C. Eldar, G. Kutyniok, Compressed Sensing: Theory and Applications (Cambridge University Press, Cambridge, 2012)

    Book  Google Scholar 

  17. A. Flinth, Optimal choice of weights for sparse recovery with prior information. IEEE Trans. Inform. Theory 62(7), 4276–4284 (2016). doi:10.1109/TIT.2016.2569122

    Article  MathSciNet  MATH  Google Scholar 

  18. S. Foucart, H. Rauhut, A Mathematical Introduction to Compressive Sensing. Applied and Numerical Harmonic Analysis (Birkhäuser/Springer, New York, 2013). doi:10.1007/978-0-8176-4948-7

    MATH  Google Scholar 

  19. M.P. Friedlander, H. Mansour, R. Saab, Ö. Yilmaz, Recovering compressively sampled signals using partial support information. IEEE Trans. Inform. Theory 58(2), 1122–1134 (2012). doi:10.1109/TIT.2011.2167214

    Article  MathSciNet  MATH  Google Scholar 

  20. L. Jacques, A short note on compressed sensing with partially known signal support. Signal Process. 90(12), 3308–3312 (2010). doi:10.1016/j.sigpro.2010.05.025. http://www.sciencedirect.com/science/article/pii/S0165168410002276

  21. M.A. Khajehnejad, W. Xu, A.S. Avestimehr, B. Hassibi, Weighted \(l_1\) minimization for sparse recovery with prior information, in 2009 IEEE International Symposium on Information Theory (2009), pp. 483–487. doi:10.1109/ISIT.2009.5205716

  22. M.J. Lai, Y. Liu, The null space property for sparse recovery from multiple measurement vectors. Appl. Comput. Harmon. Anal. 30(3), 402–406 (2011). doi:10.1016/j.acha.2010.11.002

    Article  MathSciNet  MATH  Google Scholar 

  23. A. Liao, J. Xie, X. Yang, P. Wang, The exact recovery of sparse signals via orthogonal matching pursuit. J. Comput. Math. 34(1), 70–86 (2016). doi:10.4208/jcm.1510-m2015-0284

    Article  MathSciNet  MATH  Google Scholar 

  24. J. Lin, S. Li, Y. Shen, Compressed data separation with redundant dictionaries. IEEE Trans. Inform. Theory 59(7), 4309–4315 (2013). doi:10.1109/TIT.2013.2252397

    Article  MathSciNet  MATH  Google Scholar 

  25. J. Lin, S. Li, Y. Shen, New bounds for restricted isometry constants with coherent tight frames. IEEE Trans. Signal Process. 61(3), 611–621 (2013). doi:10.1109/TSP.2012.2226171

    Article  MathSciNet  Google Scholar 

  26. H. Mansour, Ö. Yilmaz, Weighted-\(l_1\) minimization with multiple weighting sets, in SPIE Optical Engineering Applications (International Society for Optics and Photonics, 2011), pp. 813,809–813,809

  27. L. Mathelin, K.A. Gallivan, A compressed sensing approach for partial differential equations with random input data. Commun. Comput. Phys. 12(4), 919–954 (2012). doi:10.4208/cicp.151110.090911a

    Article  MathSciNet  MATH  Google Scholar 

  28. Q. Mo, S. Li, New bounds on the restricted isometry constant \(\delta _{2k}\). Appl. Comput. Harmon. Anal. 31(3), 460–468 (2011). doi:10.1016/j.acha.2011.04.005

    Article  MathSciNet  MATH  Google Scholar 

  29. J.F.C. Mota, N. Deligiannis, M.R.D. Rodrigues, Compressed sensing with prior information: strategies, geometry, and bounds. IEEE Trans. Inform. Theory 63(7), 4472–4496 (2017). doi:10.1109/TIT.2017.2695614

    Article  MathSciNet  MATH  Google Scholar 

  30. D. Needell, R. Saab, T. Woolf, Weighted \(l_1\) minimization for sparse recovery under arbitrary prior information. Inf. Inference J. IMA 6(3), 284–309 (2017)

    MATH  Google Scholar 

  31. J. Peng, J. Hampton, A. Doostan, A weighted 1-minimization approach for sparse polynomial chaos expansions. J. Comput. Phys. 267(Supplement C), 92–111 (2014). doi:10.1016/j.jcp.2014.02.024. http://www.sciencedirect.com/science/article/pii/S0021999114001442

  32. L.F. Polania, K.E. Barner, A weighted \(l_1\) minimization algorithm for compressed sensing ECG, in 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2014), pp. 4413–4417. doi:10.1109/ICASSP.2014.6854436. http://www.sciencedirect.com/science/article/pii/S0021999114001442

  33. H. Rauhut, R. Ward, Interpolation via weighted \(\ell _1\) minimization. Appl. Comput. Harmon. Anal. 40(2), 321–351 (2016). doi:10.1016/j.acha.2015.02.003

    Article  MathSciNet  MATH  Google Scholar 

  34. R. Robucci, J.D. Gray, L.K. Chiu, J. Romberg, P. Hasler, Compressive sensing on a CMOS separable-transform image sensor. Proc. IEEE 98(6), 1089–1101 (2010). doi:10.1109/JPROC.2010.2041422

    Article  Google Scholar 

  35. Q. Sun, Recovery of sparsest signals via \(\ell ^q\)-minimization. Appl. Comput. Harmon. Anal. 32(3), 329–341 (2012). doi:10.1016/j.acha.2011.07.001

    Article  MathSciNet  MATH  Google Scholar 

  36. A.M. Tillmann, M.E. Pfetsch, The computational complexity of the restricted isometry property, the nullspace property, and related concepts in compressed sensing. IEEE Trans. Inform. Theory 60(2), 1248–1259 (2014). doi:10.1109/TIT.2013.2290112

    Article  MathSciNet  MATH  Google Scholar 

  37. N. Vaswani, W. Lu, Modified-CS: modifying compressive sensing for problems with partially known support. IEEE Trans. Signal Process. 58(9), 4595–4607 (2010). doi:10.1109/TSP.2010.2051150

    Article  MathSciNet  Google Scholar 

  38. R. von Borries, C.J. Miosso, C. Potes, Compressed sensing using prior information, in 2007 2nd IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (2007), pp. 121–124 . doi:10.1109/CAMSAP.2007.4497980

  39. L. Weizman, Y. Eldar, D. Bashat, Compressed sensing for longitudinal MRI: an adaptive weighted approach. Med. Phys. 42(9), 5195–5208 (2015)

    Article  Google Scholar 

  40. Z. Xu, Compressed sensing: a survey. Sci. China Math. 42(9), 865–877 (2012). (in Chinese)

    Google Scholar 

  41. X. Yang, G.E. Karniadakis, Reweighted \(l_1\) minimization method for stochastic elliptic differential equations. J. Comput. Phys. 248(Supplement C), 87–108 (2013). doi:10.1016/j.jcp.2013.04.004. http://www.sciencedirect.com/science/article/pii/S0021999113002520

Download references

Acknowledgements

The authors thank the referees very much for carefully reading the paper and for elaborate and valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenchang Sun.

Additional information

This work was partially supported by the National Natural Science Foundation of China (11371200, 11525104 and 11531013).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huo, H., Sun, W. & Xiao, L. New Conditions on Stable Recovery of Weighted Sparse Signals via Weighted \(l_1\) Minimization. Circuits Syst Signal Process 37, 2866–2883 (2018). https://doi.org/10.1007/s00034-017-0691-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-017-0691-6

Keywords

Navigation