Skip to main content
Log in

A Novel Generalized Parallel Two-Box Structure for Behavior Modeling and Digital Predistortion of RF Power Amplifiers at LTE Applications

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper presents a generalized parallel two-box structure that is proposed for modeling and digital predistortion of power amplifiers and wireless transmitters exhibiting memory effects. The proposed predistortion scheme consists of two separable boxes; the first is utilized to model the static behavior of the power amplifier, while the second is proposed to consider the memory effect and nonlinear distortion of the power amplifier. The coefficients of the proposed model are identified by applying an indirect learning structure and a least square method. The validation of the proposed model is carried out using the simulation of the power amplifier and the digital predistortion excited by a 64QAM signal in the advanced design system software. According to the simulation results, the criterion of adjacent channel power ratio reduced by about 16 dB. The simulation results reveal an adjacent channel power ratio of almost − 48 dB. Indeed, the proposed model leads to a better performance in terms of spectral regrowth in comparison with the memory polynomial model, and it also reduces the number of coefficients by approximately 22%. This proposed model enables a more accurate modeling of nonlinear distortion and memory effects compared to previous linearization methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. A.R. Belabad, N. Masoumi, S.J. Ashtiani, A fully integrated 2.4 GHz CMOS high power amplifier using parallel class A&B power amplifier and power-combining transformer for WiMAX application. AEU Int. J. Electron. Commun. 67(12), 1030–1037 (2013)

    Article  Google Scholar 

  2. A.R. Belabad, E. Iranpour, S. Sharifian, FPGA implementation of a Hammerstein based digital predistorter for linearizing RF power amplifiers with memory effects. Amirkabir Int. J. Electr. Electron. Eng. 47(2), 9–17 (2015)

    Google Scholar 

  3. A.R. Belabad, S.A. Motamedi, S. Sharifian, An adaptive digital predistortion for compensating nonlinear distortions in RF power amplifier with memory effects. Integr. VLSI J. 57, 187–191 (2017)

    Google Scholar 

  4. J. Cha, J. Yi, J. Kim, B. Kim, Optimum design of a predistortion RF power amplifier for multicarrier WCDMA applications. IEEE Trans. Microw. Theory Tech. 52(2), 655–663 (2004)

    Article  Google Scholar 

  5. Y. Cho, J. Lee, S. Jin, B. Park, J. Moon, J. Kim, B. Kim, Fully integrated CMOS saturated power amplifier with simple digital predistortion. IEEE Microw. Wirel. Compon. Lett. 24(8), 533–535 (2014)

    Article  Google Scholar 

  6. D. Chowdhury, C.D. Hul, O.B. Degan, Y. Wang, A.M. Niknejad, A fully integrated dual-mode highly linear 2.4 GHz CMOS power amplifier for 4G WiMAX applications. IEEE J. Solid-State Circuits 44(12), 3393–3402 (2009)

    Article  Google Scholar 

  7. L. Ding, G.T. Zhou, D.R. Morgan, Z. Ma, J.S. Kenney, J. Kim, C.R. Giardina, A robust digital baseband predistorter constructed using memory polynomials. IEEE Trans. Commun. 52(1), 159–165 (2004)

    Article  Google Scholar 

  8. M. Garcia-Hernandez, A. Prieto-Guerrero, G. Laguna-Sanchez, P.J. Mendoza-Valencia, J. Sanchez-Garcia, Digital predistorter based on Volterra series for nonlinear power amplifier applied to OFDM systems using adaptive algorithms. Int. Meet. Electr. Eng. Res. 35, 118–125 (2012)

    Google Scholar 

  9. F.M. Ghannouchi, O. Hammi, Behavioral modeling, and predistortion. IEEE Microw. Mag. 10(7), 52–64 (2009)

    Article  Google Scholar 

  10. F.M. Ghannouchi, O. Hammi, M. Helaoui, Behavioral Modeling and Predistortion of the Wideband Wireless Transmitter (Wiley, New York, 2015)

    Book  Google Scholar 

  11. L. Guan, A. Zhu, Low-cost FPGA implementation of Volterra series-based digital predistorter for RF power amplifiers. IEEE Trans. Microw. Theory Tech. 58(4), 866–872 (2010)

    Article  Google Scholar 

  12. O. Hammi, F.M. Ghannouchi, Twin nonlinear two-box models for power amplifiers and transmitters exhibiting memory effects with application to digital predistortion. IEEE Micro. Wireless Compon. Lett. 19(8), 530–532 (2009)

    Article  Google Scholar 

  13. O. Hammi, M. Younes, F.M. Ghannouchi, Metrics and methods for benchmarking of RF transmitter behavioral models with application to the development of a hybrid memory polynomial model. IEEE Trans. Broadcast. 56(3), 350–357 (2010)

    Article  Google Scholar 

  14. S. Jung, H. Park, M. Kim, G. Ahn, J. Van, H. Hwangbo, C. Park, S. Park, Y. Yang, A new envelope predistorter with envelope delay taps for memory effect compensation. IEEE Trans. Microw. Theory Tech. 55(1), 52–59 (2007)

    Article  Google Scholar 

  15. G. Karimi, A. Lotfi, An analog/digital pre-distorter using particle swarm optimization for RF power amplifiers. AEU Int. J. Electron. Commun. 67, 723–728 (2013)

    Article  Google Scholar 

  16. J.S. Kenney, W. Woo, L. Ding, R. Raich, H. Ku, G.T. Zhou, The impact of memory effects on predistortion linearization of RF power amplifiers, in Proceedings of the 8th International Microwave Optical Technology Symposium, pp. 189–19 (2001)

  17. J. Kim, K. Konstantinou, Digital predistortion of wideband signals based on power amplifier model with memory. Electron. Lett. 37(23), 1417–1418 (2001)

    Article  Google Scholar 

  18. K. Lim, G. Ahn, S. Jung, H. Park, M. Kim, J. Van, H. Cho, J. Jeong, C. Park, Y. Yang, A 60 watt multicarrier WCDMA power amplifier using an RF predistorter. IEEE Trans. Circuits Syst. II Exp. Briefs. 59(4), 265–269 (2009)

    Google Scholar 

  19. T. Liu, S. Boumaiza, F.M. Ghannouchi, Deembedding static nonlinearities and accurately identifying and modeling memory effects in wide-band RF transmitters. IEEE Trans. Microw. Theory Tech. 53(11), 3578–3587 (2005)

    Article  Google Scholar 

  20. T. Liu, S. Boumaiza, F.M. Ghannouchi, Augmented Hammerstein predistorter for linearization of broad-band wireless transmitters. IEEE Trans. Microw. Theory Tech. 54(4), 1340–1349 (2006)

    Article  Google Scholar 

  21. R. Marsalek, Contributions to the power amplifier linearization using digital baseband adaptive predistortion. Ph.D. dissertation, Universite de Marne La Vallee, 2003

  22. J. Moon, B. Kim, Enhanced Hammerstein behavioral model for broadband wireless transmitters. IEEE Trans. Microw. Theory Tech. 56(4), 924–9933 (2011)

    Article  Google Scholar 

  23. K.J. Muhonen, M. Kavehrad, R. Krishnamoorthy, Look-up table techniques for adaptive digital predistortion: a development and comparison. IEEE Trans. Veh. Technol. 49(9), 1995–2002 (2000)

    Article  Google Scholar 

  24. T. Nojima, T. Konno, Cuber predistortion linearizer for relay equipment in 800 MHz band land mobile telephone system. EEE Trans. Veh. Technol. 34(4), 169–177 (1985)

    Article  Google Scholar 

  25. R. Penrose, A generalized inverse for matrices, in Proceedings the Cambridge Philosophical Society (1995), pp. 406–413

  26. H. Qian, H. Huang, S. Yao, A general adaptive digital predistortion architecture for stand-alone RF power amplifiers. IEEE Trans. Broadcast. 59(3), 528–538 (2013)

    Article  Google Scholar 

  27. B. Razavi, RF Microelectronics, 2nd edn. (Prentice Hall, Upper Saddle River, 2011)

    Google Scholar 

  28. M. Schetzen, The Volterra & Wiener Theories of Nonlinear Systems (Wiley, New York, 1989)

    MATH  Google Scholar 

  29. R. Schumacher, E.G. Lima, G.H.C. Oliveira, RF power amplifier behavioral modeling based on Takenaka–Malmquist–Volterra series. Circuits Syst. Signal Process. 35, 2298–2316 (2016)

    Article  MATH  Google Scholar 

  30. M. Seo, K. Kim, M. Kim, H. Kim, J. Jeon, M. Park, H. Lim, Y. Yang, Ultrabroadband linear power amplifier using a frequency-selective analog predistorter. IEEE Trans. Circuits Syst. II Exp. Briefs. 58(5), 264–268 (2011)

    Article  Google Scholar 

  31. J. Stoer, R. Bulirsch, Introduction to Numerical Analysis (Springer, Berlin, 2002)

    Book  MATH  Google Scholar 

  32. K. Yamauchi, K. Mori, M. Nakayama, Y. Mitsui, T. Takagi, A microwave miniaturized linearizer using a parallel diode, in Proceedings IEEE MTT-S Intemational Microwave Symposium Digest, pp 1199–1202 (1997)

  33. C. Yen, H. Chuang, A 0.25-\(\mu \)m 20-dBm 2.4-GHz CMOS power amplifier with an integrated diode linearizer. IEEE Microw. Wirel. Compon. Lett. 13(2), 45–47 (2003)

    Article  Google Scholar 

  34. J. Yi, Y. Yang, M.G. Park, W.W. Kang, B. Kim, Analog predistortion linearizer for high-power RF amplifiers. IEEE Trans. Microw. Theory Tech. 48(12), 2709–2713 (2000)

    Article  Google Scholar 

  35. M. Younes, F.M. Ghannouchi, An accurate predistorter based on a feedforward Hammerstein structure. IEEE Trans. Broadcast. 58(3), 454–461 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Ahmad Motamedi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahati Belabad, A., Motamedi, S.A. & Sharifian, S. A Novel Generalized Parallel Two-Box Structure for Behavior Modeling and Digital Predistortion of RF Power Amplifiers at LTE Applications. Circuits Syst Signal Process 37, 2714–2735 (2018). https://doi.org/10.1007/s00034-017-0700-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-017-0700-9

Keywords

Navigation