Skip to main content
Log in

Low-Delay Band-Pass Maximally Flat FIR Digital Differentiators

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

The present paper describes a closed-form transfer function of low-delay band-pass maximally flat FIR digital differentiators. Band-pass maximally flat FIR digital differentiators provide extremely high-accuracy differentiation around the center frequency which is adjusted arbitrarily. At the same time, they can reduce noise in the frequency except around the center frequency. However, the conventional method for designing band-pass maximally flat FIR digital differentiators requires linear phase characteristics. In contrast, the proposed method can realize low-delay characteristics as well as linear phase characteristics and, therefore, is a general expression of band-pass maximally flat FIR digital differentiators. The proposed transfer function is achieved as the sum of two maximally flat complex FIR digital differentiators, the coefficients of which are complex conjugates of each other. The transfer functions of these complex differentiators are derived as closed-form solutions, so that the proposed transfer function is also described as a closed-form solution. Through design examples, the effectiveness of the proposed method is confirmed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M.A. Al-Alaoui, Direct approach to image edge detection using differentiators, in Proceedings of 2010 17th IEEE International Conference on Electronics, Circuits and Systems (ICECS), (2010), pp. 154–157

  2. B. Carlsson, Maximum flat digital differentiators. Electron. Lett. 27, 675–677 (1991)

    Article  Google Scholar 

  3. C.K. Chen, J.H. Lee, Design of high-order digital differentiators using L1 error criteria. IEEE Trans. Circuit. Syst. II. Analog Digit. Signal Process. 42, 287–291 (1995)

    Article  Google Scholar 

  4. K. Hamamoto, T. Yoshida, Y. Sugiura, N. Aikawa, A design method of linear phase band-pass maximally flat FIR digital differentiators with various stopband characteristics, Proceedings of IEICE 28th Signal Processing Symposium, (2014), pp. 337–342

  5. L.J. Karam, J.H. McClellan, Complex Chebyshev approximation for FIR filter design. IEEE Trans. Circuits Syst. II I(42), 207–216 (1995)

    Article  MATH  Google Scholar 

  6. I.R. Khan, R. Ohba, Digital differentiators based on Taylor series. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E82–A, 2822–2824 (1999)

    Google Scholar 

  7. I.R. Khan, R. Ohba, New design of full band differentiators based on Taylor series. Proc. IEEE Vis. Image Signal Process. 146, 185–189 (1999)

    Article  Google Scholar 

  8. I.R. Khan, R. Ohba, Closed-form expressions for the finite difference approximations of first and higher derivatives based on Taylor series. J. Comput. Appl. Math. 107, 179–193 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. I.R. Khan, M. Okuda, Finite-impulse-response digital differentiators for midband frequencies based on maximal linearity constrains. IEEE Trans. Circuits Syst. II. Exp. Briefs 54, 242–246 (2007)

    Article  Google Scholar 

  10. M.Z. Komodromos, S.F. Russell, P.T.P. Tang, Design of FIR filters with complex desired frequency response using a generalized Remez algorithm. IEEE Trans. Circuit. Syst. II Analog Digit. Signal Process. 42, 274–278 (1995)

    Article  MATH  Google Scholar 

  11. B.C. Krishna, S.S. Rao, On design and applications of digital differentiators, in Proceedings of IEEE Fourth International Conference on Advanced Computing, (2012), pp. 1–7

  12. B. Kumar, S.C.D. Roy, Design of digital differentiators for low frequencies. Proc. IEEE 76, 287–289 (1988)

    Article  Google Scholar 

  13. B. Kumar, S.C.D. Roy, On the design of FIR digital differentiators which are maximally linear at the frequency \(\pi /p\), p\(\in \) positive integers. IEEE Trans. Signal Process. 40, 2334–2338 (1992)

    Article  Google Scholar 

  14. W.G. Medlin, J.F. Kaiser, Bandpass digital differentiator design using quadratic programming, in Proceedings of 1991 International Conference on Acoustics, Speech and Signal Processing (ICASSP-91), 3, (1991), pp. 1977–1980

  15. S.K. Mitra, Digital Signal Processing: A Computer-Based Approach (McGraw-Hill, New York, 1998)

    Google Scholar 

  16. G. Mollova, Compact formulas for least-squares design of digital differentiators. Electron. Lett. 35, 1695–1697 (1999)

    Article  Google Scholar 

  17. Y. Mori, N. Aikawa, A transfer function of low-delay maximally flat lowpass FIR digital filters. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. J87–A, 329–332 (2004)

    Google Scholar 

  18. Y. Mori, N. Aikawa, A design method of parallel-form low delay maximally flat bandpass FIR digital filters. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. J93–A, 260–268 (2010)

    Google Scholar 

  19. S.-C. Pei, J.-J. Shyu, Eigenfilter design of higher-order digital differentiators. IEEE Trans. Acoust. Speech Signal Process. 37, 505–511 (1989)

    Article  Google Scholar 

  20. J. Purczynski, C. Pawelczak, Maximally linear FIR digital differentiators in frequencies of \(\pi /p\) simplified formulas of weighting coefficients. IEEE Trans. Signal Process. 50, 978–981 (2002)

    Article  Google Scholar 

  21. L.R. Rabiner, R.W. Schafer, On the behavior of minimax relative error FIR digital differentiators. Bell Syst. Tech. J. 53, 333–361 (1974)

    Article  MATH  Google Scholar 

  22. M.R.R. Reddy, S.C.D. Roy, B. Kumar, Design of efficient second and higher degree FIR digital differentiators for midband frequencies. IEEE Proc. G Circuits Devices Syst. 138, 29–33 (1991)

    Article  Google Scholar 

  23. S. Samadi, A. Nishihara, H. Iwakura, Universal maximally flat lowpass FIR systems. IEEE Trans. Signal Process. 48, 1956–1964 (2000)

    Article  Google Scholar 

  24. I.W. Selesnick, C.S. Burrus, Exchange algorithms for the design of linear phase FIR filters and differentiators having flat monotonic passbands and equiripple stopbands. IEEE Trans. Circuits Syst. II Analog Digit. Signal Process. 43, 671–675 (1996)

    Article  Google Scholar 

  25. I.W. Selesnick, Maximally flat low-pass digital differentiators. IEEE Trans. Circuit. Syst. II Analog Digit. Signal Process. 49, 219–223 (2002)

    Article  Google Scholar 

  26. S. Sunder, R.P. Ramachandran, Least-squares design of higher order nonrecursive differentiators. IEEE Trans. Signal Process. 42, 956–961 (1994)

    Article  Google Scholar 

  27. S. Sunder, R.P. Ramachandran, Design of equiripple nonrecursive digital differentiators and hilbert transformaers using a weighted Least-squares technique. IEEE Trans. Signal Process. 42, 2504–2509 (1994)

    Article  Google Scholar 

  28. C.C. Tseng, SL. Lee, Design of sparse lowpass differentiator using iterative hard thresholding method, in Proceedings of European Conference on Circuit Theory and Design (ECCTD) 1–4(2013), (2013)

  29. S. Usui, I. Amidror, Digital low-pass differentiation for biological signal processing. IEEE Trans. Biomed. Eng. 29, 686–693 (1982)

    Article  Google Scholar 

  30. S. Valiviita, O. Vainio, Delayless differentiation algorithm and its efficient implementation for motion control applications. IEEE Trans. Instrum. Meas. 48, 967–971 (1998)

    Article  Google Scholar 

  31. M. Wan, S. Han, Z. Zhang, K. Dai, X.A. Zou, Digital differentiator-based MSK demodulator in a zero-IF receiver for 2.4 GHz Zigbee applications, Proceedings of 11th International Conference on Wireless Communications, Networking and Mobile Computing (WiCOM 2015), (2015)

  32. T. Yoshida, Y. Sugiura, N. Aikawa, A closed-form design of linear phase FIR band-pass maximally flat digital differentiators with an arbitrary center frequency. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E97–A, 2611–2617 (2014)

    Article  Google Scholar 

  33. T. Yoshida, Y. Sugiura, N. Aikawa, FIR band-pass digital differentiators with flat passband and equiripple stopband characteristics, in Proceedings of 2014 22nd European Signal Processing Conference (EUSIPCO), (2014), pp. 701–705

  34. T. Yoshida, Y. Sugiura, N. Aikawa, A design method of FIR band-pass maximally flat digital differentiators having ripple in the stopband. IEICE Tech. Rep. 113, 145–149 (2014)

    Google Scholar 

  35. T. Yoshida, Y. Sugiura, N. Aikawa, A general expression of the low-pass maximally flat FIR digital differentiators, in Proceedings of 2015 IEEE International Symposium on Circuits and Systems (ISCAS2015), (2015)

  36. X. Zhang, K. Inotsume, T. Yoshikawa, Design of low-delay FIR half-band filters with arbitrary flatness and its application to filter banks. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. J82–A, 1529–1537 (1999)

    Google Scholar 

  37. X. Zhang, Design of maximally flat IIR filters with flat group delay responses. Signal Process. 88, 1792–1800 (2008)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Yoshida.

Proof that (7) satisfies (2)

Proof that (7) satisfies (2)

1.1 Proof for (2a)–(2e)

We consider the following equation:

$$\begin{aligned}&{j\omega e^{-j\omega \tau }-P_{L,\tau }^{\kappa ,\mu }(e^{j\omega },\omega _0)}\nonumber \\&\quad =(E^{-j\omega }+1)^{2\kappa }(e^{-j\omega }-1)^{2\mu }(e^{-j\omega }-e^{j\omega _0})^{L+1}\Bigl [\Bigl \{j\omega e^{-j\omega \tau }(e^{-j\omega }+1)^{-2\kappa }\nonumber \\&\quad \cdot (e^{-j\omega }-1)^{-2\mu }(e^{-j\omega }-e^{j\omega _0})^{-(L+1)}\Bigr \}-Q_{L,\tau }^{\kappa ,\mu }(e^{j\omega },\omega _0)\Bigr ]\nonumber \\&\quad =(e^{-j\omega }+1)^{2\kappa }(e^{-j\omega }-1) ^{2\mu }(e^{-j\omega }-e^{j\omega _0})^{L+1}\nonumber \\&\quad \left\{ Q_{\infty , \tau }^{\kappa ,\mu }(e^{j\omega },\omega _0)- Q_{L,\tau }^{\kappa ,\mu }(e^{j\omega },\omega _0)\right\} , \end{aligned}$$
(10)

where

$$\begin{aligned}&{Q_{\infty ,\tau }^{\kappa ,\mu }(e^{j\omega },\omega _0)}\nonumber \\&\quad =\sum _{n=0}^{\infty }\frac{1}{n!}\frac{d^n}{d\zeta }\nonumber \\&\quad \left\{ -\ln (\zeta ) \zeta ^{\tau }(\zeta +1)^{-2\kappa }\left. (\zeta -1)^{-2\mu }(\zeta -\zeta _0^{-1})^{-(L+1)}\right\} \right| _{\zeta =\zeta _0}\nonumber \\&\quad \cdot (e^{-j\omega }-e^{-j\omega _0})^n\nonumber \\&\quad =\sum _{n=0}^{\infty }q_{n,\tau }^{\kappa ,\mu }(\omega _0)(e^{-j\omega }-e^{-j\omega _0})^{n},\nonumber \\&\quad {\left\{ \begin{array}{ll} \zeta =e^{-j\omega }\\ \zeta _0=e^{-j\omega _0}\\ -\ln (\zeta )=j\omega . \end{array}\right. } \end{aligned}$$
(11)

Using (10) and (11), \(P_{L,\tau }^{\kappa ,\mu }(e^{j\omega },\omega _0)\) is rewritten as

$$\begin{aligned} P_{L,\tau }^{\kappa ,\mu }(e^{j\omega },\omega _0)= & {} j\omega e^{-j(\omega \tau - \theta _0)}-(e^{-j\omega }-e^{-j\omega _0})^{L+1}\varPsi _1 (e^{j\omega }, \omega _0),\quad \end{aligned}$$
(12)

where

$$\begin{aligned} \varPsi _1 (e^{j\omega },\omega _0)= & {} (e^{-j\omega }+1)^{2\kappa }(e^{-j\omega }-1)^{2\mu }(e^{-j\omega }-e^{j\omega _0})^{L+1}\nonumber \\&\cdot \sum _{n=0}^{\infty }q_{n+L+1,\tau }^{\kappa ,\mu }(\omega _0)(e^{-j\omega }-e^{-j\omega _0})^{n}, \end{aligned}$$
(13)

and \(\varPsi _1 (e^{j\omega },\omega _0)\) is bounded at \(\omega =\omega _0\).

From (7) and (12), \(H(e^{j\omega })\) can be deformed as

$$\begin{aligned} H(e^{j\omega })= & {} j\omega e^{-j(\omega \tau -\theta _0)}-(e^{-j\omega }-e^{-j\omega _0})^{L+1}\varPsi _2 (e^{j\omega }, \omega _0)\nonumber \\= & {} j\omega e^{-j(\omega \tau -\theta _0)}\Bigl \{ 1-(\omega -\,\omega _0)^{L+1}\varPsi _3 (e^{j\omega }, \omega _0)\Bigr \}, \end{aligned}$$
(14)

where

$$\begin{aligned} \varPsi _2 (e^{j\omega }, \omega _0)= & {} e^{j\theta _0}\varPsi _1 (e^{j\omega },\omega _0)\nonumber \\&-\,e^{-j\theta _0}(e^{-j\omega }+1)^{2\kappa }(e^{-j\omega }-1)^{2\mu }Q_{L,\tau }^{\kappa ,\mu }(e^{j\omega },-\,\omega _0) \end{aligned}$$
(15)
$$\begin{aligned} \varPsi _3 (e^{j\omega }, \omega _0)= & {} \frac{(-je^{-j\omega _0})^{L+1}}{j\omega e^{-j\omega \tau }}\left\{ \frac{e^{-j(\omega -\,\omega _0)}-1}{-j(\omega -\,\omega _0)}\right\} ^{L+1}\varPsi _2 (e^{j\omega }, \omega _0), \end{aligned}$$
(16)

and both \(\varPsi _2 (e^{j\omega },\omega _0)\) and \(\varPsi _3 (e^{j\omega },\omega _0)\) are bounded at \(\omega =\omega _0\).

Next, we assume the transfer function of the low-delay low-pass MFDDs [35] given by

$$\begin{aligned} H_{low}(e^{j\omega })= & {} j\omega e^{-j(\omega \tau )}\Bigl \{ 1-(\omega )^{2\mu +1}{\tilde{\varPsi }} (e^{j\omega })\Bigr \}, \end{aligned}$$
(17)

where \({\tilde{\varPsi }}(e^{j\omega })\) is the function bounded at \(\omega =0\). In [35], \(H_{\mathrm{low}}(e^{j\omega })\) was proven to satisfy both the magnitude and the group delay constraints at \(\omega =0\). Thus, the proof that (14) satisfies both the magnitude and group delay constraints at \(\omega =\omega _0\) can be provided by applying the proof in the previous study [35]. Moreover, (7) is also expressed as

$$\begin{aligned}&H(e^{j\omega })=j\omega e^{-j(\omega \tau +\theta _0)}\Bigl \{ 1-(\omega +\omega _0)^{L+1}\varPsi _3 (e^{j\omega }, -\,\omega _0)\Bigr \}, \end{aligned}$$
(18)

so that the proof for the constraints at \(\omega =-\,\omega _0\) can be provided in the same manner as the proof at \(\omega =\omega _0\). Therefore, it is clear that (7) satisfies (2a)–(2e).\(\square \)

1.2 Proof for (2f) and (2g)

Equation (7) can be transformed into

$$\begin{aligned}&H(e^{j\omega })=(\cos \omega +1)^{\kappa }(\cos \omega -1)^{\mu }\varPhi (e^{j\omega }), \end{aligned}$$
(19)

where \(\varPhi (e^{j\omega })\) is bounded at \(\omega =\{0, \pi \}\) and is given by

$$\begin{aligned} \varPhi (e^{j\omega })= & {} \Big (\frac{e^{-j\omega }}{2}\Big )^{\kappa + \mu }\left\{ (e^{-j\omega }-e^{j\omega _0})^{L+1}Q_{L,\tau }^{\kappa ,\mu }(e^{j\omega },\omega _0)\right. \nonumber \\&\left. +(e^{-j\omega }-e^{-j\omega _0})^{L+1}Q_{L,\tau }^{\kappa ,\mu }(e^{j\omega },-\,\omega _0)\right\} , \end{aligned}$$
(20)

Thus, (19) satisfies (2f) and (2g) according to the proof for the magnitude constraints of linear phase band-pass MFDDs at \(\omega =\{0, \pi \}\) [32].\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoshida, T., Aikawa, N. Low-Delay Band-Pass Maximally Flat FIR Digital Differentiators. Circuits Syst Signal Process 37, 3576–3588 (2018). https://doi.org/10.1007/s00034-017-0722-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-017-0722-3

Keywords

Navigation