Skip to main content
Log in

Hyperchaotic Memcapacitor Oscillator with Infinite Equilibria and Coexisting Attractors

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

A newly introduced charge-controlled memcapacitor-based hyperchaotic oscillator with coexisting chaotic attractors is investigated. Dynamic analysis of the oscillator shows that it has infinite number of equilibrium points and shows multistability. Its multistability analysis in the parameter space shows the existence of chaotic and hyperchaotic attractors. Fractional-order analysis of the hyperchaotic oscillator shows that the hyperchaos remains in the fractional order too. Field programmable gate arrays are used to realize the proposed oscillator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. G. Adomian, A review of the decomposition method and some recent results for nonlinear equations. Math. Comput. Model. 13(7), 17–43 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  2. M.P. Aghababa, Robust finite-time stabilization of fractional-order chaotic systems based on fractional Lyapunov stability theory. J. Comput. Nonlinear Dyn. 7(2), 021010 (2012)

    Article  Google Scholar 

  3. D. Baleanu, K. Diethelm, E. Scalas, J.J. Trujillo, Fractional Calculus: Models and Numerical Methods, vol. 5 (World Scientific, Singapore, 2016)

    MATH  Google Scholar 

  4. K. Barati, S. Jafari, J.C. Sprott, V.-T. Pham, Simple chaotic flows with a curve of equilibria. Int. J. Bifurc. Chaos 26(12), 1630034 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. R. Barboza, L.O. Chua, The four-element Chua’s circuit. Int. J. Bifurc. Chaos 18(04), 943–955 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. G. Bianchi, N. Kuznetsov, G. Leonov, M. Yuldashev, R. Yuldashev: Limitations of PLL simulation: hidden oscillations in MatLab and SPICE, in Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT), 2015 7th International Congress on 2015 (IEEE), pp. 79–84

  7. B. Blażejczyk-Okolewska, T. Kapitaniak, Co-existing attractors of impact oscillator. Chaos Solitons Fractals 9(8), 1439–1443 (1998)

    Article  MATH  Google Scholar 

  8. B. Bo-Cheng, S. GuoDong, X. JianPing, L. Zhong, P. SaiHu, Dynamics analysis of chaotic circuit with two memristors. Sci. China Technol. Sci. 54(8), 2180–2187 (2011). https://doi.org/10.1007/s11431-011-4400-6

    Article  MATH  Google Scholar 

  9. E.A. Boroujeni, H.R. Momeni, Non-fragile nonlinear fractional order observer design for a class of nonlinear fractional order systems. Sig. Process. 92(10), 2365–2370 (2012)

    Article  Google Scholar 

  10. A. Buscarino, L. Fortuna, M. Frasca, L.V. Gambuzza, A gallery of chaotic oscillators based on HP memristor. Int. J. Bifurc. Chaos 23(05), 1330015 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. A. Buscarino, L. Fortuna, M. Frasca, L. Valentina Gambuzza, A chaotic circuit based on Hewlett–Packard memristor. Chaos Interdiscip. J. Nonlinear Sci. 22(2), 023136 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. D. Cafagna, G. Grassi, Fractional-order systems without equilibria: the first example of hyperchaos and its application to synchronization. Chin. Phys. B 24(8), 080502 (2015)

    Article  Google Scholar 

  13. R. Caponetto, S. Fazzino, An application of Adomian decomposition for analysis of fractional-order chaotic systems. Int. J. Bifurc. Chaos 23(03), 1350050 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. A. Charef, H. Sun, Y. Tsao, B. Onaral, Fractal system as represented by singularity function. IEEE Trans. Autom. Control 37(9), 1465–1470 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  15. L. Chua, Memristor-the missing circuit element. IEEE Trans. Circuit Theory 18(5), 507–519 (1971)

    Article  Google Scholar 

  16. L.O. Chua, S.M. Kang, Memristive devices and systems. Proc. IEEE 64(2), 209–223 (1976)

    Article  MathSciNet  Google Scholar 

  17. A. Chudzik, P. Perlikowski, A. Stefanski, T. Kapitaniak, Multistability and rare attractors in van der Pol–Duffing oscillator. Int. J. Bifurc. Chaos 21(07), 1907–1912 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. F. Corinto, V. Krulikovskyi, S.D. Haliuk: Memristor-based chaotic circuit for pseudo-random sequence generators, in 2016 18th Mediterranean 2016 Electrotechnical Conference (MELECON) (IEEE), pp. 1–3

  19. M.-F. Danca, N. Kuznetsov, Hidden chaotic sets in a Hopfield neural system. Chaos Solitons Fractals 103, 144–150 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. M.-F. Danca, N. Kuznetsov, G. Chen, Unusual dynamics and hidden attractors of the Rabinovich–Fabrikant system. Nonlinear Dyn. 88(1), 791–805 (2017)

    Article  MathSciNet  Google Scholar 

  21. M.-F. Danca, W.K. Tang, G. Chen, Suppressing chaos in a simplest autonomous memristor-based circuit of fractional order by periodic impulses. Chaos Solitons Fractals 84, 31–40 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. K. Diethelm, The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type (Springer, Berlin, 2010)

    Book  MATH  Google Scholar 

  23. E. Dong, Z. Liang, S. Du, Z. Chen, Topological horseshoe analysis on a four-wing chaotic attractor and its FPGA implement. Nonlinear Dyn. 83(1–2), 623–630 (2016)

    Article  MathSciNet  Google Scholar 

  24. D. Dudkowski, S. Jafari, T. Kapitaniak, N.V. Kuznetsov, G.A. Leonov, A. Prasad, Hidden attractors in dynamical systems. Phys. Rep. 637, 1–50 (2016). https://doi.org/10.1016/j.physrep.2016.05.002

    Article  MathSciNet  MATH  Google Scholar 

  25. S. Ellner, A.R. Gallant, D. McCaffrey, D. Nychka, Convergence rates and data requirements for Jacobian-based estimates of Lyapunov exponents from data. Phys. Lett. A 153(6–7), 357–363 (1991)

    Article  MathSciNet  Google Scholar 

  26. A.L. Fitch, H.H. Iu, D. Yu: Chaos in a memcapacitor based circuit, in 2014 IEEE International Symposium on 2014 Circuits and Systems (ISCAS) (IEEE), pp. 482–485

  27. S. He, K. Sun, H. Wang, Complexity analysis and DSP implementation of the fractional-order lorenz hyperchaotic system. Entropy 17(12), 8299–8311 (2015)

    Article  Google Scholar 

  28. S. Jafari, V.-T. Pham, T. Kapitaniak, Multiscroll chaotic sea obtained from a simple 3D system without equilibrium. Int. J. Bifurc. Chaos 26(02), 1650031 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  29. S. Jafari, J.C. Sprott, Erratum to:“Simple chaotic flows with a line equilibrium” [Chaos, Solitons and Fractals 57 (2013) 79–84]. Chaos Solitons Fractals 77, 341–342 (2015)

    Article  MathSciNet  Google Scholar 

  30. S. Jafari, J.C. Sprott, Simple chaotic flows with a line equilibrium. Chaos Solitons Fractals 57, 79–84 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. P. Jaros, L. Borkowski, B. Witkowski, K. Czolczynski, T. Kapitaniak, Multi-headed chimera states in coupled pendula. Eur. Phys. J. Spec. Top. 224(8), 1605–1617 (2015)

    Article  Google Scholar 

  32. H. Kim, M.P. Sah, C. Yang, S. Cho, L.O. Chua, Memristor emulator for memristor circuit applications. IEEE Trans. Circuits Syst. I Regul. Pap. 59(10), 2422–2431 (2012)

    Article  MathSciNet  Google Scholar 

  33. S.T. Kingni, V.-T. Pham, S. Jafari, G.R. Kol, P. Woafo, Three-dimensional chaotic autonomous system with a circular equilibrium: analysis, circuit implementation and its fractional-order form. Circuits Syst. Signal Process. 35(6), 1933–1948 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  34. N. Kuznetsov, The Lyapunov dimension and its estimation via the Leonov method. Phys. Lett. A 380(25), 2142–2149 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  35. N. Kuznetsov, T. Alexeeva, G. Leonov: Invariance of Lyapunov characteristic exponents, Lyapunov exponents, and Lyapunov dimension for regular and non-regular linearizations. arXiv preprint arXiv:1410.2016 (2014)

  36. N. Kuznetsov, G. Leonov, M. Yuldashev, R. Yuldashev, Hidden attractors in dynamical models of phase-locked loop circuits: limitations of simulation in MATLAB and SPICE. Commun. Nonlinear Sci. Numer. Simul. 51, 39–49 (2017)

    Article  Google Scholar 

  37. N. Kuznetsov, T. Mokaev, P. Vasilyev, Numerical justification of Leonov conjecture on Lyapunov dimension of Rossler attractor. Commun. Nonlinear Sci. Numer. Simul. 19(4), 1027–1034 (2014)

    Article  MathSciNet  Google Scholar 

  38. V. Lakshmikantham, A. Vatsala, Basic theory of fractional differential equations. Nonlinear Anal. Theory Methods Appl. 69(8), 2677–2682 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  39. D.M. Leenaerts, Higher-order spectral analysis to detect power-frequency mechanisms in a driven Chua’s circuit. Int. J. Bifurc. Chaos 7(06), 1431–1440 (1997)

    Article  MATH  Google Scholar 

  40. G.A. Leonov, N.V. Kuznetsov, Hidden attractors in dynamical systems. From hidden oscillations in Hilbert–Kolmogorov, Aizerman, and Kalman problems to hidden chaotic attractor in Chua circuits. Int. J. Bifurc. Chaos 23(01), 1330002 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  41. C. Li, Z. Gong, D. Qian, Y. Chen, On the bound of the Lyapunov exponents for the fractional differential systems. Chaos Interdisc. J. Nonlinear Sci. 20(1), 013127 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  42. C. Li, W. Hu, J.C. Sprott, X. Wang, Multistability in symmetric chaotic systems. Eur. Phys. J. Spec. Top. 224(8), 1493–1506 (2015)

    Article  Google Scholar 

  43. R. Li, W. Chen, Fractional order systems without equilibria. Chin. Phys. B 22, 040503 (2013)

    Article  Google Scholar 

  44. Y. Maistrenko, T. Kapitaniak, P. Szuminski, Locally and globally riddled basins in two coupled piecewise-linear maps. Phys. Rev. E 56(6), 6393 (1997)

    Article  MathSciNet  Google Scholar 

  45. A. Maus, J. Sprott, Evaluating Lyapunov exponent spectra with neural networks. Chaos Solitons Fractals 51, 13–21 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  46. B. Muthuswamy, Implementing memristor based chaotic circuits. Int. J. Bifurc. Chaos 20(05), 1335–1350 (2010)

    Article  MATH  Google Scholar 

  47. B. Muthuswamy, P.P. Kokate, Memristor-based chaotic circuits. IETE Tech. Rev. 26(6), 417–429 (2009)

    Article  Google Scholar 

  48. Y.V. Pershin, M. Di Ventra, Emulation of floating memcapacitors and meminductors using current conveyors. Electron. Lett. 47(4), 243–244 (2011)

    Article  Google Scholar 

  49. I. Petráš, Method for simulation of the fractional order chaotic systems. Acta Montan. Slovaca 11(4), 273–277 (2006)

    Google Scholar 

  50. C. Pezeshki, S. Elgar, R. Krishna, Bispectral analysis of possessing chaotic motion. J. Sound Vib. 137(3), 357–368 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  51. V.-T. Pham, S. Jafari, T. Kapitaniak, Constructing a chaotic system with an infinite number of equilibrium points. Int. J. Bifurc. Chaos 26(13), 1650225 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  52. V.T. Pham, S. Jafari, C. Volos, T. Kapitaniak, A gallery of chaotic systems with an infinite number of equilibrium points. Chaos Solitons Fractals 93, 58–63 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  53. C. Pradhan, S.K. Jena, S.R. Nadar, N. Pradhan, Higher-order spectrum in understanding nonlinearity in EEG rhythms. Comput. Math. Methods Med. 2012, 206857 (2012). https://doi.org/10.1155/2012/206857

    Article  MathSciNet  MATH  Google Scholar 

  54. H. Qing-Hui, L. Zhi-Jun, Z. Jin-Fang, Z. Yi-Cheng, Design and simulation of a memristor chaotic circuit based on current feedback op amp. Acta. Phys. Sin. (Chinese Edition) 63(18) (2014). https://doi.org/10.7498/aps.63.180502

  55. K. Rajagopal, L. Guessas, A. Karthikeyan, A. Srinivasan, G. Adam, Fractional order memristor no equilibrium chaotic system with its adaptive sliding mode synchronization and genetically optimized fractional order PID synchronization. Complexity 2017, 1892618 (2017). https://doi.org/10.1155/2017/1892618

    MathSciNet  MATH  Google Scholar 

  56. K. Rajagopal, L. Guessas, S. Vaidyanathan, A. Karthikeyan, A. Srinivasan, Dynamical analysis and FPGA implementation of a novel hyperchaotic system and its synchronization using Adaptive Sliding mode control and genetically optimized PID control. Math. Prob. Eng. 2017, 7307452 (2017). https://doi.org/10.1155/2017/7307452

    Article  MathSciNet  Google Scholar 

  57. K. Rajagopal, A. Karthikeyan, P. Duraisamy, Hyperchaotic Chameleon: fractional order FPGA mentation. Complexity 2017, 8979408 (2017). https://doi.org/10.1155/2017/8979408

    Google Scholar 

  58. K. Rajagopal, A. Karthikeyan, A.K. Srinivasan, FPGA implementation of novel fractional-order chaotic systems with two equilibriums and no equilibrium and its adaptive sliding mode synchronization. Nonlinear Dyn. 87, 1–24 (2017)

    Article  Google Scholar 

  59. V. Rashtchi, M. Nourazar, FPGA Implementation of a real-time weak signal detector using a duffing oscillator. Circuits Syst. Signal Process. 34(10), 3101–3119 (2015)

    Article  Google Scholar 

  60. H. Shao-Bo, S. Ke-Hui, W. Hui-Hai, Solution of the fractional-order chaotic system based on Adomian decomposition algorithm and its complexity analysis. Acta Phys. Sin. (Chinese Edition) 63(3) (2014). https://doi.org/10.7498/aps.63.030502

  61. P. Sharma, M. Shrimali, A. Prasad, N. Kuznetsov, G. Leonov, Control of multistability in hidden attractors. Eur. Phys. J. Spec. Top. 224(8), 1485–1491 (2015)

    Article  Google Scholar 

  62. A. Silchenko, T. Kapitaniak, V. Anishchenko, Noise-enhanced phase locking in a stochastic bistable system driven by a chaotic signal. Phys. Rev. E 59(2), 1593 (1999)

    Article  Google Scholar 

  63. J.C. Sprott, A proposed standard for the publication of new chaotic systems. Int. J. Bifurc. Chaos 21(09), 2391–2394 (2011)

    Article  Google Scholar 

  64. J.C. Sprott, C. Li, Asymmetric bistability in the Rössler system. Acta Phys. Pol. B 32, 97–107 (2017)

    Article  Google Scholar 

  65. J.C. Sprott, X. Wang, G. Chen, Coexistence of point, periodic and strange attractors. Int. J. Bifurc. Chaos 23(05), 1350093 (2013)

    Article  MathSciNet  Google Scholar 

  66. A. Stefanski, A. Dabrowski, T. Kapitaniak, Evaluation of the largest Lyapunov exponent in dynamical systems with time delay. Chaos Solitons Fractals 23(5), 1651–1659 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  67. D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, The missing memristor found. Nature 453(7191), 80–83 (2008)

    Article  Google Scholar 

  68. H. Sun, A. Abdelwahab, B. Onaral, Linear approximation of transfer function with a pole of fractional power. IEEE Trans. Autom. Control 29(5), 441–444 (1984)

    Article  MATH  Google Scholar 

  69. F.R. Tahir, S. Jafari, V.-T. Pham, C. Volos, X. Wang, A novel no-equilibrium chaotic system with multiwing butterfly attractors. Int. J. Bifurc. Chaos 25(04), 1550056 (2015)

    Article  MathSciNet  Google Scholar 

  70. M. Tavazoei, M. Haeri, Unreliability of frequency-domain approximation in recognising chaos in fractional-order systems. IET Signal Proc. 1(4), 171–181 (2007)

    Article  Google Scholar 

  71. E. Tlelo-Cuautle, V. Carbajal-Gomez, P. Obeso-Rodelo, J. Rangel-Magdaleno, J.C. Nuñez-Perez, FPGA realization of a chaotic communication system applied to image processing. Nonlinear Dyn. 82(4), 1879–1892 (2015)

    Article  MathSciNet  Google Scholar 

  72. E. Tlelo-Cuautle, A. Pano-Azucena, J. Rangel-Magdaleno, V. Carbajal-Gomez, G. Rodriguez-Gomez, Generating a 50-scroll chaotic attractor at 66 MHz by using FPGAs. Nonlinear Dyn. 85(4), 2143–2157 (2016)

    Article  Google Scholar 

  73. E. Tlelo-Cuautle, J. Rangel-Magdaleno, A. Pano-Azucena, P. Obeso-Rodelo, J.C. Nuñez-Perez, FPGA realization of multi-scroll chaotic oscillators. Commun. Nonlinear Sci. Numer. Simul. 27(1), 66–80 (2015)

    Article  MathSciNet  Google Scholar 

  74. Z. Trzaska: Matlab solutions of chaotic fractional order circuits. Chapter 19, in All Assi. Engineering Education and Research Using MATLAB. Intech, Rijeka (2011)

  75. G.-Y. Wang, P.-P. Jin, X.-W. Wang, Y.-R. Shen, F. Yuan, X.-Y. Wang, A flux-controlled model of meminductor and its application in chaotic oscillator. Chin. Phys. B 25(9), 090502 (2016)

    Article  Google Scholar 

  76. G. Wang, M. Cui, B. Cai, X. Wang, T. Hu, A chaotic oscillator based on HP memristor model. Math. Probl. Eng. 2015, 561901 (2015). https://doi.org/10.1155/2015/561901

    MathSciNet  Google Scholar 

  77. G. Wang, S. Jiang, X. Wang, Y. Shen, F. Yuan, A novel memcapacitor model and its application for generating chaos. Math. Probl. Eng. 2016, 3173696 (2016). https://doi.org/10.1155/2016/3173696

    MathSciNet  Google Scholar 

  78. G. Wang, C. Shi, X. Wang, F. Yuan, Coexisting oscillation and extreme multistability for a memcapacitor-based circuit. Math. Prob. Eng. 2017, 6504969 (2017). https://doi.org/10.1155/2017/6504969

    MathSciNet  Google Scholar 

  79. Q. Wang, S. Yu, C. Li, J. Lü, X. Fang, C. Guyeux, J.M. Bahi, Theoretical design and FPGA-based implementation of higher-dimensional digital chaotic systems. IEEE Trans. Circuits Syst. I Regul. Pap. 63(3), 401–412 (2016)

    Article  MathSciNet  Google Scholar 

  80. A. Wolf, J.B. Swift, H.L. Swinney, J.A. Vastano, Determining Lyapunov exponents from a time series. Physica D 16(3), 285–317 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  81. X. Ya-Ming, W. Li-Dan, D. Shu-KaiL, A memristor-based chaotic system and its field programmable gate array implementation. ACTA Phys. Sin. 65(12), 120503 (2016). https://doi.org/10.7498/aps.65.120503

    Google Scholar 

  82. C. Yang, Q. Hu, Y. Yu, R. Zhang, Y. Yao, J. Cai: Memristor-based chaotic circuit for text/image encryption and decryption, in 2015 8th International Symposium on 2015 Computational Intelligence and Design (ISCID) (IEEE), pp. 447–450

  83. D. Yu, Y. Liang, H. Chen, H.H. Iu, Design of a practical memcapacitor emulator without grounded restriction. IEEE Trans. Circuits Syst. II Express Briefs 60(4), 207–211 (2013)

    Article  Google Scholar 

  84. R. Zhang, J. Gong, Synchronization of the fractional-order chaotic system via adaptive observer. Syst. Sci. Control Eng. Open Access J. 2(1), 751–754 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karthikeyan Rajagopal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajagopal, K., Jafari, S., Karthikeyan, A. et al. Hyperchaotic Memcapacitor Oscillator with Infinite Equilibria and Coexisting Attractors. Circuits Syst Signal Process 37, 3702–3724 (2018). https://doi.org/10.1007/s00034-018-0750-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-018-0750-7

Keywords

Navigation