Skip to main content
Log in

Design of High-Performance ECG Detector for Implantable Cardiac Pacemaker Systems using Biorthogonal Wavelet Transform

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

A digital electrocardiogram (ECG) detector with low power consumption and high performance based on biorthogonal 2.2 wavelet transform and applicable for the modern implantable cardiac pacemakers is proposed in the present work. Biorthogonal 2.2 wavelet transform is chosen due to its high SNR, less number of coefficients, resemblance of shape with ECG wave and ability to increase QRS complex detection performance. Architecture of the proposed ECG detector includes modified biorthogonal 2.2 wavelet filter bank and a modified soft threshold-based QRS complex detector. Three low-pass filters and one high-pass filter with pipelined architecture are used which are lesser than the earlier designed detectors. Various blocks of proposed detector are designed to denoise the input ECG signal and then to find the correct location of R-wave. Verilog hardware description language for design entry, Modelsim embedded in Xilinx ISE v.14.1 for simulation, Virtex-6 FPGAs for synthesis and Xilinx ISE tools are used to measure the performance, area and power of the proposed ECG detector and its constituent blocks. A low detection error rate of 0.13%, positive predictivity (\(\hbox {P}^{+}\)) of 99.94% and sensitivity (\(\hbox {S}_{\mathrm{e}}\)) of 99.92% are achieved for the proposed ECG detector which are better compared to the previous results. Also, it consumes only 20 mW of total power at 50 KHz and shows the overall delay of 18.924 ns which makes it useful for the low power and high-performance applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. V.X. Afonso, W.J. Tompkins, T.Q. Nguyen, S. Luo, ECG beat detection using filter banks. IEEE Trans. Biomed. Eng. 46, 192–202 (1999)

    Article  Google Scholar 

  2. Bhavtosh, D. Berwal, Y. Kumar, High performance QRS complex detector for wearable ECG system using multi scaled product with booth multiplier and soft threshold algorithm, IEEE ICSC-15, 204–209 (2015)

  3. G.M. Friesen, T.C. Jannett, M.A. Jadallah, S.L. Yates, S.R. Quint, H.T. Nagle, A comparison of the noise sensitivity of nine QRS detection algorithms. IEEE Trans. Biomedical Engineering 37(1), 85–98 (1990)

    Article  Google Scholar 

  4. R.X. Gao, R. Yan, Wavelets: Theory and Applications for Manufacturing. Springer Science and Business Media publication, ISBN 978 1 4419 1544 3, (2010)

  5. F. Gritzali, G. Frangakis, G. Papakonstantinou, Detection of the P and T waves in an ECG. Comput. Biomed. Res. 22, 83–91 (1989)

    Article  Google Scholar 

  6. P.S. Hamilton, W.J. Tompkins, Quantitative investigation of QRS detection rules using the MIT-BIH arrhythmai database. IEEE Trans. Biomed. Eng. 12, 1157–1187 (1986)

    Article  Google Scholar 

  7. Y.H. Hu, W.J. Tompkins, J.L. Urrusti, V.X. Afonso, Applications of artificial neural networks for ECG signal detection and classification. J. Electrocardiol. 26(Suppl.), 66–73 (1993)

    Google Scholar 

  8. S. Kadambe, R. Murray, G.F.B. Bartels, Wavelet transform-based QRS complex detector. IEEE Trans. Biomed. Eng. 46, 838–848 (1999)

    Article  Google Scholar 

  9. B.U. Kohler, C. Hennig, R. Orglmeister, The principles of software QRS detection. IEEE Eng. Med. Biol. Mag. 21(1), 42–57 (2002)

    Article  Google Scholar 

  10. B.U. Kohler, C. Hennig, R. Orglmeister, QRS detection using zero crossing counts. Prog. Biomed. Res. 8(3), 138–145 (2003)

  11. C. Li, C. Zheng, C. Tai, Detection of ECG characteristic pointsusing wavelet transforms. IEEE Trans. Biomed. Eng. 42, 21–28 (1995)

    Article  Google Scholar 

  12. Y.J. Min, H.K. Kim, Y.R. Kang, G.S. Kim, J. Park, S.W. Kim, Design of wavelet-based ECG detector for implantable cardiac pacemakers. IEEE Trans. Biomed. Circuits Syst. 7(4), 426–436 (2013)

    Article  Google Scholar 

  13. T. Pan, L. Zhang, S. Zhou, Detection of ECG characteristic points using biorthogonl spline wavelet. IEEE Trans. Biomed. Eng. Inform. 2, 858–863 (2010)

    Google Scholar 

  14. E. Pietka, Feature extraction in computerized approach to the ECG analysis. Pattern Recog. 24, 139–146 (1991)

    Article  Google Scholar 

  15. R. Poli, S. Cagnoni, G. Valli, Genetic design of optimum linear and nonlinear QRS detectors. IEEE Trans. Biomed. Eng. 42, 1137–1141 (1995)

    Article  Google Scholar 

  16. J.N. Rodrigues, T. Olsson, L. Sornmo, V. Owall, Digital implementation of a wavelet-based event detector for cardiac pacemakers. IEEE Trans. Syst. I 52(12), 2686–2698 (2005). Reg. Papers

    Google Scholar 

  17. R.S. Sanders, M.T. Lee, Implantable pacemakers. Proc. IEEE 84(3), 480–486 (1996)

    Article  Google Scholar 

  18. M.G. Strintzis, G. Stalidis, X. Magnisalis, N. Maglaveras, Use of neural networks for electrocardiogram (ECG) feature extraction, recognition and classification. Neural Netw. World 3(4), 313–327 (1992)

    Google Scholar 

  19. Y. Sun, S. Suppappola, T.A. Wrublewski, Microcontroller-based real-time QRS detection. Biomed. Instrum. Technol. 26(6), 477–484 (1992)

    Google Scholar 

  20. Y. Sun, K.L. Chan, S.M. Krishan, Characteristic wave detection ECG signal using morphological transform BMC Cardiovasular. Disorders 5(1), 28 (2005)

    Google Scholar 

  21. P.E. Trahanias, An approach to QRS complex detection using mathematical morphology. IEEE Trans. Biomed. Eng. 40(2), 201–205 (1993)

    Article  Google Scholar 

  22. G. Vijaya, V. Kumar, H.K. Verma, ANN-based QRS-complex analysis of ECG. J. Med. Eng. Technol. 22(4), 160–167 (1998)

    Article  Google Scholar 

  23. H.W. Wang, Y.L. Lai, M.C. Hou, S.H. Lin, B.S. Yen, Y.C. Huang, L.C. Chou, S.Y. Hsu, S.C. Huang, M.Y. Jan, A \(\pm 6\) ms- accuracy, \(0.68\text{mm}^{2}\) and \(2.21\,{\upmu \text{ W }}\) QRS detection ASIC, in Proc. IEEE Circuits Syst. Symp., Paris, France, pp. 1372-1375 (2010)

  24. L.L. Wang, T.Y. Chen, Q. Fang, S.Y. Lee, Implementation of a wireless ECG acquisition SOC for IEEE 802.15.4 (ZigBee) applications. IEEE J. Biomed. Health Infom. 19(1), 247–255 (2015)

    Article  Google Scholar 

  25. L.S.Y. Wong, S. Hossain, A. Ta, J. Edvinsson, D.H. Rivas, H. Naas, A very low-power CMOS mixed-signal IC for implantable pacemaker applications. IEEE J. Solid-State Circuits 39(12), 2446–2456 (2004)

    Article  Google Scholar 

  26. Q. Xue, Y.H. Hu, W.J. Tompkins, Neural-network-based adaptive matched filtering for QRS detection. IEEE Trans. Biomed. Eng. 39, 317–329 (1992)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashish Kumar.

Appendix

Appendix

See Table 4.

Table 4 Signal-to-noise ratio for different MIT-BIH signals

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Berwal, D. & Kumar, Y. Design of High-Performance ECG Detector for Implantable Cardiac Pacemaker Systems using Biorthogonal Wavelet Transform. Circuits Syst Signal Process 37, 3995–4014 (2018). https://doi.org/10.1007/s00034-018-0754-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-018-0754-3

Keywords

Navigation