Skip to main content
Log in

Pruned Discrete Tchebichef Transform Approximation for Image Compression

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Discrete transforms are widely employed in image and video coding standards. Because the discrete Tchebichef transform (DTT) presents good energy compaction properties, its usage in image compression schemes has been studied as an alternative to the discrete cosine transform (DCT). Embedded applications, such as wireless visual sensor networks, exhibit severe energy consumption restrictions. In such context, low-complexity discrete transforms approximations have been employed for data compression to save energy and bandwidth. In the current work, we proposed a set of low-complexity pruned DTT approximations suitable for low-power embedded systems. The introduced methods are obtained by pruning the state-of-art DTT approximation, being applicable in the image and video coding context. VLSI architectures were realized and the measured results assessed, showing that the proposed pruned methods present significant reduction in computational costs when compared to the DCT. At the same time, the performance is maintained roughly the same, suggesting a favorable trade-off for low-power applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Dover Publications, New York, 1964)

    MATH  Google Scholar 

  2. N.A. Abu, S.L. Wong, N.S. Herman, R. Mukundan, An efficient compact Tchebichef moment for image compression, in 10th International Conference on Information Sciences Signal Processing and Their Applications (ISSPA) (IEEE, 2010), pp. 448–451

  3. N. Ahmed, K.R. Rao, Orthogonal Transforms for Digital Signal Processing (Springer, Berlin, 1975)

    Book  MATH  Google Scholar 

  4. Y. Arai, T. Agui, M. Nakajima, A fast DCT-SQ scheme for images. Trans. IEICE E–71, 1095–1097 (1988)

    Google Scholar 

  5. F.M. Bayer, R.J. Cintra, DCT-like transform for image compression requires 14 additions only. Electron. Lett. 48, 919–921 (2012)

    Article  Google Scholar 

  6. D.S. Bernstein, Matrix Mathematics: Theory, Facts, and Formulas (Princeton University Press, Princeton, 2009)

    Book  MATH  Google Scholar 

  7. V. Bhaskaran, K. Konstantinides, Image and Video Compression Standards (Kluwer Academic Publishers, Dordrecht, 1997)

    Book  Google Scholar 

  8. S. Bouguezel, M.O. Ahmad, M.N.S. Swamy, Low-complexity \(8\times 8\) transform for image compression. Electron. Lett. 44, 1249–1250 (2008)

    Article  Google Scholar 

  9. S. Boussakta, Fast algorithm for the 3-D DCT-II. IEEE Trans. Signal Process. 52, 992–1001 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. V. Britanak, P. Yip, K.R. Rao, Discrete Cosine and Sine Transforms (Academic Press, London, 2007)

    Book  Google Scholar 

  11. M. Budagavi, A. Fuldseth, G. Bjontegaard, V. Sze, M. Sadafale, Core transform design in the high efficiency video coding (HEVC) standard. IEEE J. Sel. Top. Signal Process. 7(6), 1029–1041 (2013)

    Article  Google Scholar 

  12. W.H. Chen, C. Smith, S. Fralick, A fast computational algorithm for the discrete cosine transform. IEEE Trans. Commun. 25, 1004–1009 (1977)

    Article  MATH  Google Scholar 

  13. R.J. Cintra, F.M. Bayer, V.A. Coutinho, S. Kulasekera, A. Madanayake, A. Leite, Energy-efficient 8-point DCT approximations: theory and hardware architectures. Circuits Syst. Signal Process. 35(11), 4009–4029 (2016)

    Article  Google Scholar 

  14. R.J. Cintra, F.M. Bayer, C.J. Tablada, Low-complexity 8-point DCT approximations based on integer functions. Signal Process. 99, 201–214 (2014)

    Article  Google Scholar 

  15. V.A. Coutinho, R.J. Cintra, F.M. Bayer, Low-complexity multidimensional DCT approximations for high-order tensor data decorrelation. IEEE Trans. Image Process. 26(5), 2296–2310 (2017)

    Article  MathSciNet  Google Scholar 

  16. V.A. Coutinho, R.J. Cintra, FM. Bayer, S. Kulasekera, A. Madanayake, Low-complexity pruned 8-point DCT approximations for image encoding, in IEEE International Conference on Electronics, Communications and Computers (CONIELECOMP) (2015), pp. 1–7

  17. V.A. Coutinho, R.J. Cintra, F.M. Bayer, S. Kulasekera, A. Madanayake, A multiplierless pruned DCT-like transformation for image and video compression that requires ten additions only. J. Real Time Image Process. 12(2), 247–255 (2016)

    Article  Google Scholar 

  18. T.L. da Silveira, R.S. Oliveira, F.M. Bayer, R.J. Cintra, A. Madanayake, Multiplierless 16-point DCT approximation for low-complexity image and video coding. Signal Image Video Process. 11(2), 227–233 (2017)

    Article  Google Scholar 

  19. E. Feig, S. Winograd, Fast algorithms for the discrete cosine transform. IEEE Trans. Signal Process. 40, 2174–2193 (1992)

    Article  MATH  Google Scholar 

  20. S. Gordon, D. Marpe, T. Wiegand, Simplified use of \(8 \times 8\) transform—updated proposal and results, in Joint Video Team (JVT) of ISO/IEC MPEG and ITU-T VCEG, doc. JVT–K028, Munich, Germany (2004)

  21. R. Hartley, Optimization of canonic signed digit multipliers for filter design, in IEEE International Sympoisum on Circuits and Systems, 1991 (IEEE, 1991), pp. 1992–1995

  22. T.I. Haweel, A new square wave transform based on the DCT. Signal Process. 82, 2309–2319 (2001)

    Article  MATH  Google Scholar 

  23. M.T. Heideman, Multiplicative Complexity, Convolution, and the DFT. Signal Processing and Digital Filtering (Springer, Berlin, 1988)

    Book  MATH  Google Scholar 

  24. N.J. Higham, Computing real square roots of a real matrix. Linear Algebr. Appl. 8889, 405–430 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  25. International Organisation for Standardisation, Generic Coding of Moving Pictures and Associated Audio Information—Part 2: Video. (ISO/IEC JTC1/SC29/WG11—coding of moving pictures and audio, ISO, 1994)

  26. International Telecommunication Union, ITU-T recommendation H.263 version 1: Video coding for low bit rate communication. Technical report, ITU-T (1995)

  27. International Telecommunication Union, High efficiency video coding: Recommendation ITU-T H.265. Technical report, ITU-T Series H: Audiovisual and Multimedia Systems (2013)

  28. S. Ishwar, P.K. Meher, M.N.S. Swamy, Discrete Tchebichef transform—a fast \(4\times 4\) algorithm and its application in image/video compression, in International Symposium on Circuits and Systems (ISCAS) (IEEE, 2008), pp. 260–263

  29. M .A. Joshi, M.S. Raval, Y.H. Dandawate, K .R. Joshi, S .P. Metkar, Image and Video Compression: Fundamentals, Techniques, and Applications (CRC Press, Boca Raton, 2014)

    Book  Google Scholar 

  30. M. Jridi, A. Alfalou, P.K. Meher, A generalized algorithm and reconfigurable architecture for efficient and scalable orthogonal approximation of DCT. IEEE Trans. Circuits Syst. I Regul. Pap. 62(2), 449–457 (2015)

    Article  Google Scholar 

  31. N.R. Kidwai, E. Khan, M. Reisslein, ZM-SPECK: a fast and memoryless image coder for multimedia sensor networks. IEEE Sens. J. 16(8), 2575–2587 (2016)

    Article  Google Scholar 

  32. N. Kouadria, N. Doghmane, D. Messadeg, S. Harize, Low complexity DCT for image compression in wireless visual sensor networks. Electron. Lett. 49, 1531–1532 (2013)

    Article  Google Scholar 

  33. N. Kouadria, K. Mechouek, D. Messadeg, N. Doghmane, Pruned discrete Tchebichef transform for image coding in wireless multimedia sensor networks. AEU Int. J. Electron. Commun. 74, 123–127 (2017)

    Article  Google Scholar 

  34. V. Lecuire, L. Makkaoui, J.-M. Moureaux, Fast zonal DCT for energy conservation in wireless image sensor networks. Electron. Lett. 48, 125–127 (2012)

    Article  Google Scholar 

  35. B.G. Lee, A new algorithm for computing the discrete cosine transform. IEEE Trans. Acoust. Speech Signal Process. ASSP 32, 1243–1245 (1984)

    Article  MATH  Google Scholar 

  36. J.S. Lim, Two-Dimensional Signal and Image Processing (Prentice Hall, Englewood Cliffs, 1990)

    Google Scholar 

  37. C. Loeffler, A. Ligtenberg, G.S. Moschytz, Practical fast 1-D DCT algorithms with 11 multiplications, in ICASSP International Conference on Acoustics, Speech, and Signal Processing, vol 2 (1989), pp. 988–991

  38. L. Makkaoui, V. Lecuire, J. Moureaux, Fast zonal DCT-based image compression for wireless camera sensor networks, in 2nd International Conference on Image Processing Theory Tools and Applications (IPTA) (IEEE, 2010), pp. 126–129

  39. J. Markel, FFT pruning. IEEE Trans. Audio Electroacoust. 19, 305–311 (1971)

    Article  Google Scholar 

  40. MulticoreWare (2017). x265 HEVC Encoder/H.265 Video Codec. http://x265.org

  41. P.A.M. Oliveira, R.J. Cintra, F.M. Bayer, S. Kulasekera, A. Madanayake, A discrete Tchebichef transform approximation for image and video coding. IEEE Signal Process. Lett. 22(8), 1137–1141 (2015)

    Article  Google Scholar 

  42. P.A.M. Oliveira, R.J. Cintra, F.M. Bayer, S. Kulasekera, A. Madanayake, Low-complexity image and video coding based on an approximate discrete Tchebichef transform. IEEE Trans. Circuits Syst. Video Technol. (2016). https://doi.org/10.1109/TCSVT.2016.2515378

  43. A. Ortega, K. Ramchandran, Rate-distortion methods for image and video compression. IEEE Signal Process. Mag. 15(6), 23–50 (1998)

    Article  Google Scholar 

  44. M.T. Pourazad, C. Doutre, M. Azimi, P. Nasiopoulos, HEVC: the new gold standard for video compression: How does HEVC compare with H.264/AVC? IEEE Consum. Electron. Mag. 1, 36–46 (2012)

    Article  Google Scholar 

  45. S. Prattipati, S. Ishwar, M.N.S. Swamy, P.K, Meher, A fast \(8 \times 8\) integer Tchebichef transform and comparison with integer cosine transform for image compression, in IEEE 56th International Midwest Symposium on Circuits and Systems (MWSCAS) (IEEE, 2013a), pp. 1294–1297

  46. S. Prattipati, M. Swamy, P. Meher, A variable quantization technique for image compression using integer Tchebichef transform, in 9th International Conference on Information, Communications and Signal Processing (ICICS) (IEEE, 2013b), pp. 1–5

  47. S. Prattipati, M.N.S. Swamy, P.K. Meher, A comparison of integer cosine and Tchebichef transforms for image compression using variable quantization. J. Signal Inf. Process. 6(03), 203 (2015)

    Google Scholar 

  48. K.R. Rao, P. Yip, Discrete Cosine Transform: Algorithms, Advantages, Applications (Academic Press, San Diego, CA, 1990)

    Book  MATH  Google Scholar 

  49. I. Richardson, The H.264 Advanced Video Compression Standard, 2nd edn. (Wiley, New York, 2010)

    Book  Google Scholar 

  50. R.K. Senapati, U.C. Pati, K.K. Mahapatra, A fast zigzag pruned \(4 \times 4\) DTT algorithm for image compression. WSEAS Trans. Signal Process. 7(1), 34–43 (2011a)

    Google Scholar 

  51. R.K. Senapati, U.C. Pati, K.K. Mahapatra, A low complexity embedded image coding algorithm using hierarchical listless DTT, in 8th International Conference on Information, Communications and Signal Processing (ICICS) (IEEE, 2011b), pp. 1–5

  52. R.K. Senapati, U.C. Pati, K.K. Mahapatra, Reduced memory, low complexity embedded image compression algorithm using hierarchical listless discrete Tchebichef transform. IET Image Process. 8(4), 213–238 (2014)

    Article  Google Scholar 

  53. Signal and Image Processing Institute (USC-SIPI Image Database, 2017). http://sipi.use.edu/database/

  54. G.J. Sullivan, J. Ohm, W.-J. Han, T. Wiegand, Overview of the high efficiency video coding (HEVC) standard. IEEE Trans. Circuits Syst. Video Technol. 22, 1649–1668 (2012a)

    Article  Google Scholar 

  55. G.J. Sullivan, J.-R. Ohm, W.-J. Han, T. Wiegand, Overview of the high efficiency video coding (HEVC) standard. IEEE Trans. Circuits Syst. Video Technol. 22, 1649–1668 (2012b)

    Article  Google Scholar 

  56. C.N. Taylor, D. Panigrahi, S. Dey, Design of an adaptive architecture for energy efficient wireless image communication, in Embedded Processor Design Challenges (Springer, Berlin, 2002), pp. 260–273

  57. J.V. Team, Recommendation H.264 and ISO/IEC 14 496–10 AVC: Draft ITU-T recommendation and final draft international standard of joint video specification. Technical report, ITU-T (2003)

  58. G.K. Wallace, The JPEG still picture compression standard, IEEE Transactions on Consumer Electronics, 38, xviii–xxxiv (1992)

  59. Z. Wang, Pruning the fast discrete cosine transform. IEEE Trans. Commun. 39, 640–643 (1991)

    Article  Google Scholar 

  60. Z. Wang, A.C. Bovik, H.R. Sheikh, E.P. Simoncelli, Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13, 600–612 (2004)

    Article  Google Scholar 

  61. Z. Wang, B. Hunt, The discrete cosine transform—a new version, in Proceedings of IEEE International Conference on ICASSP, vol. 8 (1983), pp. 1256–1259

  62. S. Winograd, in Arithmetic Complexity of Computations. CBMS-NSF Regional Conference Series in Applied Mathematics (1980)

  63. x264 team (2017). x264. http://videolan.org/developers/x264.html

  64. Xiph Foundation (2017). Xiph.org Video Test Media. http://media.xiph.org/video/derf/

  65. Y. Zeng, G. Bi, A.R. Leyman, New polynomial transform algorithm for multidimensional DCT. IEEE Trans. Signal Process. 48(10), 2814–2821 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  66. H. Zhu, M. Liu, H. Shu, H. Zhang, L. Luo, General form for obtaining discrete orthogonal moments. IET Image Process. 4(5), 335–352 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank CNPq, CAPES, and FACEPE, Brazil; and the University of Akron, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vítor A. Coutinho.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coutinho, V.A., Cintra, R.J., Bayer, F.M. et al. Pruned Discrete Tchebichef Transform Approximation for Image Compression. Circuits Syst Signal Process 37, 4363–4383 (2018). https://doi.org/10.1007/s00034-018-0768-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-018-0768-x

Keywords

Navigation