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Abstract Deep learning based speech enhancement approaches like Deep
Neural Networks (DNN) and Long-Short Term Memory (LSTM) have already
demonstrated superior results to classical methods. However these methods
do not take full advantage of temporal context information. While DNN and
LSTM consider temporal context in the noisy source speech, it does not do so
for the estimated clean speech. Both DNN and LSTM also have a tendency to
over-smooth spectra, which causes the enhanced speech to sound muffled.

This paper proposes a novel architecture to address both issues, which
we term a conditional generative model (CGM). By adopting an adversarial
training scheme applied to a generator of deep dilated convolutional layers,
CGM is designed to model the joint and symmetric conditions of both noisy
and estimated clean spectra. We evaluate CGM against both DNN and LSTM
in terms of Perceptual Evaluation of Speech Quality (PESQ) and Short-Time
Objective Intelligibility (STOI) on TIMIT sentences corrupted by ITU-T P.501
and NOISEX-92 noise in a range of matched and mismatched noise conditions.
Results show that both the CGM architecture and the adversarial training
mechanism lead to better PESQ and STOI in all tested noise conditions. In
addition to yielding significant improvements in PESQ and STOI, CGM and
adversarial training both mitigate against over-smoothing.
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1 Introduction

Speech enhancement aims to improve the quality and intelligibility of speech
which is degraded by background noise. Recently, with the emergence of deep
learning techniques, Deep Neural Network (DNN) based speech enhancement
methods [?,?,?,?,?,?,?,?,?,?,?,?,?] have been demonstrated to outperform
classical methods such as spectral subtraction [?] or log-MMSE [?,?]. For ex-
ample, in [?], a multi-objective learning framework was proposed to optimize
a joint objective function, and mask-based post-processing used to improve
performance. Also, in [?], the authors proposed enhancing the noisy and re-
verberant speech by learning a mapping to reverberant target speech. Most
recent works [?,?,?,?,?,?] that employ Long-Short Term Memory (LSTM) [?]
to better model the context of long term noisy speech, have achieved even
better enhancement results.

However, two issues are still not well addressed in these advances. The
first is that the temporal context information, which is characteristic of both
noisy and clean speech time sequences, is not fully exploited. In conventional
DNN and LSTM based methods, only the temporal context of noisy speech
is considered, with the temporal dependency limited by the restricted number
of input frames in DNN, or by the finite memory capacity of LSTM.

Meanwhile, the temporal context of output frames (i.e. estimated clean
speech), is generally considered to be independent. This is obviously unlike
real speech, which does exhibit temporal correlation between frames. Fur-
thermore, past frames are not used as an input to the estimation. The sec-
ond issue is spectral over-smoothing, generally resulting in muffled enhanced
speech [?]. Current DNN and LSTM based methods usually adopt Minimum
Mean Square Error (MMSE) as a training criterion, and are widely regarded
as regression models. However, the MMSE criterion cannot effectively alleviate
spectral over-smoothing, since it is found that smoothing effects often cause
square error reduction during estimation [?,?].

To address both issues, we propose a conditional generative model (CGM)
for speech enhancement, which will be detailed in Section 2. CGM comprises
a generator and a discriminator plus a training scheme. Specifically, we design
a novel generator inspired by WaveNet [?] to take full advantage of temporal
context information in both noisy and estimated clean speech spectra, and
replace conventional MMSE with a more elaborate criterion that can provide
a more realistic and accurate estimation. Furthermore, an adversarial training
scheme inspired by Generative Adversarial Networks (GANs) [?] is adopted to
achieve this.

As far as we know, the first attempt at using GAN for speech enhancement
is SEGAN [?], in which a generator directly imports approximately one second
of noisy waveform, then outputs a clean waveform of the same length. SEGAN
achieved a Perceptual Evaluation of Speech Quality (PESQ) [?] improvement
of approximately 0.2 over unprocessed noisy speech. It was a clear demonstra-
tion of the potential of GANs for speech enhancement. Unlike SEGAN, our
proposed CGM architecture mainly operates in the frequency domain with
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context input from both noisy and estimated clean speech spectra. Further-
more, CGM can support different generators. In Section 3 we make use of this
property to evaluate using conventional DNN and LSTMs as generators within
the new architecture. Evaluation in terms of PESQ and Short-Time Objective
Intelligibility (STOI) [?] will show that CGM is able to effectively exploit the
temporal context information in both noisy and clean speech. Section 4 will
detail significant enhancement improvements compared to DNN and LSTM
with both the architecture and the adversarial training scheme being shown
able to contribute to overall performance. Section 5 will conclude the paper.

2 Conditional Generative Model

As mentioned, CGM is expected to model the conditional distribution of cur-
rent clean spectrum, given input (noisy) and past estimated output (clean)
spectra:

xt ∼ pr(xt|xt−1, . . . ,xt−C ,yt+F , . . . ,yt, . . . ,yt−P ) (1)

where xt and yt are the t-th frame of clean and noisy spectra and C, F
and P determine the receptive field of past clean spectra, future and past
noisy spectra respectively. Unfortunately, the distribution shown in Eq. (1) is
difficult to model explicitly because of the high dimensional continuous variable
xt. However, it is possible to model the distribution implicitly according to the
principles of the GAN framework. GAN generator G, estimates the t-th clean
frame, x̂t, as,

x̂t = G(xt−1, . . . ,xt−C ,yt+F , . . . ,yt, . . . ,yt−P ; θ) (2)

where θ represents the parameter set of G, and generator G implicitly models
a conditional distribution,

x̂t ∼ pθ(x̂t|xt−1, . . . ,xt−C ,yt+F , . . . ,yt, . . . ,yt−P ) (3)

When adversarial training converges, pθ tends to converge to pr, which means
x̂t and xt are expected to come from the same conditional distribution [?].
Therefore, in order to implement this idea, three components of CGM are
needed; (i) a generatorG which imports both noisy and estimated clean spectra
to generate x̂t; (ii) a discriminator D which distinguishes whether the input
is a real spectrum or not; (iii) an adversarial training scheme and a multi-step
prediction training strategy.

Conventional DNN and LSTMs can also work as generator G in the pro-
posed architecture, although they would only use noisy spectra y as input.
The effectiveness of doing this will be evaluated in Section 3.

It is worth mentioning that in this paper, ‘real spectrum’ or ‘real sample’
refer to the magnitude spectrum of clean speech collected from dataset, while
‘fake spectrum’ or ‘fake sample’ denote the estimated clean speech magnitude
spectrum generated by G.
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2.1 Generator Architecture

In the experiments of this paper, the sampling rate for all waveforms was
16 kHz, from which magnitude spectra of dimension 257 were computed at
32 ms frame length with 10 ms shift. The generator G imports and outputs
µ-law companded [?] magnitude spectra of noisy and estimated clean speech.
In fact, this setting is helpful for our generator, because unlike log magnitude
spectra, µ-law companded magnitude spectra lie in the range of [-1, 1], which
is more suitable for a feedback-structure model. Our initial experiments also
showed that µ-law companded magnitude spectra performed better than log
magnitude spectra.

The architecture of G is shown in Fig. 1 and consists of three parts; input
layer, several stacked hidden blocks and an output layer, all described below;

hidden block 
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Fig. 1 An overview of the generator G in CGM. x and y represent clean and noisy spectra.
FC, W, sigm, c©, s©, ⊗ and ⊕ represent full connection, linear transformation, sigmoid ac-
tivation, concatenation, equally slicing operation, element-wise multiplication and addition
respectively.

1) An input layer processes neighboring clean and noisy spectra at each
time step with linear transformation:

u1
t = Wx[xt−1,xt−2] (4)

v1
t = Wy[yt+1,yt,yt−1] (5)

where [.] represents concatenation.
2) L− 1 hidden blocks are stacked, as shown in Fig. 1. Hidden blocks are

designed with the main consideration that the enhancement of noisy spectra
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will benefit from the estimation of clean spectra, and vice versa. FCu2 and
FCv2 are two fully connected layers which have the same input and output
dimensions, but use different sets of parameters. This setting follows the design
methodology of ResNet [?], where FCu2 and FCv2 both correspond to the
second weight layer in the building block. Meanwhile, tanh and sigm are the
main components of the gated activation unit, which was firstly introduced
in [?] to replace ReLU [?], and was also used in [?]. For outputs ult or vlt, the
connections within each hidden block are symmetric with respect to inputs
ul−1∗ and vl−1∗ . In addition, with the similar conditioning method in [?], ult
and vlt can be considered as conditional outputs, i.e.

ult = f(ul−1t ,ul−1
t−dl |v

l−1
t+dl

,vl−1t ,vl−1
t−dl), l = 2, . . . , L (6)

vlt = g(vl−1
t+dl

,vl−1t ,vl−1
t−dl |u

l−1
t ,ul−1

t−dl), l = 2, . . . , L (7)

where dl is the temporal dilation factor for hidden block l. In this paper, the
dilation is doubled for every hidden block up to a limit and then repeated:
e.g. 1,2,4,8,1,2,4,8. The dilation factors are based on the method used in the
WaveNet [?] architecture. As long as L and dl of all hidden blocks are known,
according to eqns. (4) to (7), C = Σdl + 2 and P = C − 1.

3) As shown in the right part of Fig. 1, output x̂t is derived from skip
vector sLt of the last hidden block L with a linear transformation and a tanh
activation:

x̂t = tanh(Wss
L
t ) (8)

where sLt is the concatenation of the two gated activation units shown towards
the top of the hidden block structure in the left part of Fig. 1.

There are two main differences between our proposed architecture and
WaveNet. Firstly, WaveNet is a time-consuming architecture, for it predicts
one waveform sample at a time, and needs many dilated convolution layers
to obtain an adequate receptive field. By contrast, our proposed architecture
processes each frame with much fewer convolution layers, which means it is
likely to work faster than WaveNet. Secondly, the conditioning methods are
different. In WaveNet, the linear transformed condition vector is added directly
to activation inputs in all layers, while in our proposed architecture, condition
vectors are extracted layer by layer.

2.2 Discriminator Architecture

The discriminator D imports one frame of 257-dimension magnitude spectra,
and must determine whether it is from real or fake data. The architecture of D
is similar to the DCGAN discriminator [?], and is composed of one-dimensional
convolution, leaky ReLU [?], batch normalization [?] and full connection layers.
Details of the architecture are shown in Table 1. This architecture cooperates
with the adversarial training described in Section 2.3, which is based on the
Wasserstein-GAN [?] approach, so the last layer is a linear transformation.
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Table 1 Discriminator D Architecture

Layer Setting

Input Input dimension=257

Convolution
Kernel size=8, Stride=4,

Kernel number=64, Pad=2

Leaky ReLU Slope=0.2

Convolution
Kernel size=8, Stride=4,

Kernel number=128, Pad=2

Batch Normalization Momentum=0.9, ε=0.001

Leaky ReLU Slope=0.25

Convolution
Kernel size=8, Stride=4,

Kernel number=256, Pad=2

Batch Normalization Momentum=0.9, ε=0.001

Leaky ReLU Slope=0.25

Full Connection Output dimension=1

2.3 Adversarial Training

The two main differences between the proposed architecture and the Wasserstein-
GAN system are how it is trained, and how it samples. Firstly, our CGM
training criterion is more elaborate. The GAN loss functions for D and G are
defined similar to [?] as:

LD = Ez[Ex̂t∼pθ(x̂t|z)D(x̂t)− Ext∼pr(xt|z)D(xt)] (9)

LG = −EzEx̂t∼pθ(x̂t|z)D(x̂t) (10)

where z = {xt−1, . . . ,xt−C ,yt+F , . . . ,yt, . . . ,yt−P } is a pair of sequences of
clean spectra and corresponding noisy spectra, forming the input of G. Eqns.
(9) and (10) encourage G to generate realistic spectra, which ideally cannot
be distinguished from real ones by D, but they do not indicate the amount of
error (or correspondence) between x̂t and xt. In order to solve this problem,
LG is modified by adding a Mean Square Error (MSE) component to the loss
function, which is complementary to GAN loss,

LG = Ez[−αEx̂t∼pθ(x̂t|z)D(x̂t)

+(1− α)Ex̂t∼pθ(x̂t|z),xt∼pr(xt|z)
1

2
‖x̂t − xt‖22]

(11)

where α ∈ [0, 1) is a scalar controlling the relative weighting of GAN and MSE
loss. Note that α cannot be set to 1 because this will cause MSE loss to be
ignored. As a result, G would not generate correct spectra during inference
and would fail to enhance noisy speech.

Secondly, a sampling method needs to be defined for eqns. (9) and (11), that
incorporates both clean and noisy inputs. To do this, a pair of corresponding
clean and noisy spectra sequences, z, are sampled, from which G generates a
fake sample x̂t. Next the real sample xt corresponding to z is selected. More
details will be given in Section 2.5.
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2.4 Multi-step Prediction Training

Using a conventional training procedure [?], a mismatch problem would arise
between training and inference stages. This is because, in conventional train-
ing, clean spectra of z are real spectra xt−1, . . . ,xt−C , whereas in the inference
stage, these change to predicted spectra x̂t−1, . . . , x̂t−C . The errors between
the two spectra lead to a mismatch, especially prevalent in low SNR situa-
tions. To alleviate this, we adopt a multi-step prediction training strategy.
During training, G does look-ahead prediction in sequential time steps. After
each spectra is predicted, it is fed back as the next estimated clean input of
G. When multi-step prediction has finished, the loss gradients across all time
steps are back-propagated as a batch.

2.5 Complete Training Algorithm

By combining adversarial training and multi-step prediction training described
in Section 2.3 and 2.4, we propose the complete training algorithm for CGM,
as detailed in Algorithm 1. The main part, line 15 to 22 in Algorithm 1, is
illustrated and described in Fig. 2.

It is worth mentioning that, to implement multi-step prediction training,
two fixed-size queues, Qx and Qy, are used to store the input sequences of
clean and noisy spectra, [xt−1, . . . ,xt−C ] and [yt+F , . . . ,yt−P ], respectively at
current prediction step t. Therefore, the sizes of Qx and Qy are C and F+1+P
respectively. At the beginning of each step, the input of G, z, is built with all
items of Qx and Qy. Then at the end of each step, the last items of Qx and
Qy are popped out, and the newly estimated clean spectrum is pushed into
the front of Qx. Likewise, the next noisy spectrum is pushed into the front of
Qy.

3 Experiments

3.1 Experimental Settings

Experiments employed all 4620 TIMIT [?] utterances for training, along with
copies corrupted by 6 SNR levels of 13 types of noise1. Meanwhile, 192 ut-
terances from the TIMIT core test set, along with utterances corrupted by 6
noise types2 at 4 levels of {−5, 0, 5, 10}dB SNR, were used to build the test
set. Four generative models were used for comparison.

1 Noises were con bin, met mono, off mono, car mono, rai mono, res mono, train, traffic
from the ITU-T recommendation P.501 database [?] and white, factory1, factory2, babble,
machinegun from NOISEX-92 [?], each at levels of {−5, 0, 5, 10, 15, 20}dB SNR.

2 Matched noises: white from NOISEX-92 database, res mono and con bin from ITU-
T recommendation P.501 database; Mismatched noises: destroyerops, f16 and m109 from
NOISEX-92 database.
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Fig. 2 An illustration of Multi-step Prediction Training in the complete training algorithm
of CGM. (a) to (d) mainly shows the procedure of line 15 to 22 in Algorithm 1 when s = 0
and s = 1. The noisy input part is omitted for ease of presentation. Each circle represents
one frame of clean or estimated clean spectrum. ”G&D loss” corresponds to the calculation
of LG and LD (line 18 and 19 in Algorithm 1). (a) s = 0, Qx is initialized with all clean
spectra, then estimated clean spectrum x̂t is generated by G. LG and LD at current frame
are calculated and accumulated. (b) s = 0, the last item xt−C is popped out from Qx, and
x̂t is pushed at the front of Qx. (c) s = 1, x̂t+1 is generated given already changed Qx, and
another frame of LG and LD are accumulated. (d) s = 1, the last item xt−C+1 is popped
out from Qx, and x̂t+1 is pushed at the front of Qx. Qy behaves similarly as Qx, with
the difference that clean spectrum is replaced by noisy spectrum. This procedure repeats
until s > S − 1, with clean spectra in Qx gradually replaced by estimated clean spectra. At
last, θ or φ is updated according to line 23 to 28 in Algorithm 1, when all LG and LD are
accumulated.

1. DNN was a baseline deep neural network [?] consisting of 3 hidden layers
with 2048 ReLU activation units per layer and a 257-dimensional output
layer. Batch Normalization [?] was employed to improve generalization.

2. LSTM was a baseline LSTM system [?] consisting of 3 hidden layers with
620 cells per layer and a 257-dimensional output layer.

3. CGMS was a short context CGM, sized to match the temporal context of
the baseline DNN system. In CGMS , L=3, [d2, d3]=[1,2], and the dimension
of slt was 544× 2. From Section 2.1, we can see that C=5 and P=4.

4. CGML was designed to make use of a longer temporal context with L=9
and [d2, . . . , d9]=[1,2,4,8,1,2,4,8]. The dimension of slt was 256 × 2. C was
therefore set to 32 and P to 31.

For both DNN and LSTM, 9 frames of noisy log magnitude spectra were
concatenated as the input vector at each time step to give a fair compar-
ison between methods. Setting F = 4 for the CGMs ensured that all four
models imported the same future noisy context of µ-law companded [?] in-
put magnitude spectra. In terms of the past noisy spectra, DNN and CGMS
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Algorithm 1 Complete training algorithm for CGM. Default parameter val-
ues used in experiments of this paper: S = 33, K0 = 5, µ = 0.00002, m = 256,
c = 0.02, α = 0.5.
Input:

Prediction step size, S;
The number of iteration of D per G iteration, K0;
Learning rate, µ;
Batch size, m;
Clipping parameter, c;
Weighting parameter, α;

Output:
G parameter set, θ;
D parameter set, φ;

1: Randomly initialize θ and φ;
2: p = 1; // p records total iteration times
3: while θ has not converge do
4: if mod(p,K0 + 1) 6= 0 then
5: K = K0; // Optimize D
6: else
7: K = 1; // Optimize G
8: end if
9: for k = 1 to K do

10: Clear D loss: LD = 0;
11: Clear G loss: LG = 0;

12: Sample a batch: {x(i)
t+S−1, . . . ,x

(i)
t−C ,y

(i)
t+F+S , . . . ,y

(i)
t−P }

m
i=1.

13: Initialize clean input queue: Qx = [{x(i)
t−1}mi=1, . . . , {x

(i)
t−C}

m
i=1];

14: Initialize noisy input queue: Qy = [{y(i)
t+F }

m
i=1, . . . , {y

(i)
t−P }

m
i=1];

15: for s = 0 to S − 1 do
16: Build G input: z = {Qx,Qy};
17: Estimate clean spectra: {x̂(i)

t+s}mi=1 = G(z);

18: Accumulate D loss: LD = LD + 1
m

∑m
i=1[D(x̂

(i)
t+s)−D(x

(i)
t+s)];

19: Accumulate G loss: LG = LG+ 1
m

∑m
i=1[−αD(x̂

(i)
t+s)+(1−α) 1

2
‖x̂(i)
t+s−x

(i)
t+s‖22];

20: Pop out the last item of Qx, push {x̂(i)
t+s}mi=1 at the front of Qx;

21: Pop out the last item of Qy , push {y(i)
t+F+s+1}

m
i=1 at the front of Qy ;

22: end for
23: if mod(p,K0 + 1) 6= 0 then
24: Update φ according to ∇φLD using RMSProp [?] at learning rate µ;
25: Clip φ: φ = clip(φ,−c, c);
26: else
27: Update θ according to ∇θLG using RMSProp at learning rate µ;
28: end if
29: p = p+ 1
30: end for
31: end while

processed the same 4 frames, CGML exploited 31 frames, while LSTM ex-
ploited all past frames. Meanwhile the number of parameters in DNN, LSTM
and CGMS were all about 13.7 million, and CGML contained fewer, at ap-
proximately 12.3 million. As discussed, only the CGMs were able to make use
of past clean estimated spectra, with CGMS and CGML importing 5 and 32
frames respectively per step.
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Table 2 Exploring the benefit of incorporating clean estimated data as well as noisy input
data in the model. PESQ and STOI for various system configurations in different levels of
machined and unmatched noise.

Matched noise Mismatched noise
dB SNR -5 0 5 10 -5 0 5 10 Mean

PESQ

Noisy 1.376 1.716 2.075 2.432 1.487 1.840 2.199 2.544 1.959
DNN 1.967 2.449 2.820 3.084 1.876 2.322 2.686 2.985 2.524
CGMS 2.250 2.684 3.006 3.260 2.018 2.427 2.770 3.081 2.687
LSTM 2.289 2.712 3.006 3.230 1.955 2.415 2.791 3.104 2.688
CGML 2.486 2.900 3.188 3.407 2.006 2.443 2.809 3.131 2.796

STOI

Noisy 0.597 0.710 0.812 0.889 0.612 0.717 0.812 0.888 0.755
DNN 0.721 0.821 0.884 0.922 0.683 0.798 0.872 0.917 0.827
CGMS 0.781 0.864 0.916 0.948 0.722 0.825 0.893 0.937 0.861
LSTM 0.791 0.862 0.904 0.931 0.701 0.811 0.881 0.923 0.851
CGML 0.840 0.899 0.935 0.958 0.720 0.827 0.897 0.942 0.878

The adversarial training scheme of Section 2.3, was evaluated with α set
to 0.5 in eqn. (11). Conventional MMSE training [?] was evaluated by setting
α = 0 in eqn. (11). The RMSProp algorithm was adopted for the adversar-
ial training, with a fixed learning rate of 0.00002. MMSE applied the Adam
algorithm [?] with a fixed learning rate of 0.0002. All experiments were im-
plemented using MXNet [?], with the enhanced waveform reconstructed from
the estimated clean magnitude spectra, using phase from the original noisy
speech.

4 Results and Analysis

In this section, results are evaluated to separately identify the benefits of
(i) utilizing estimated clean speech as an input, (ii) making use of longer
temporal context and (iii) employing adversarial training, before presenting
the combined results.

4.1 Utilizing estimated clean speech as input

The hypothesis that exploiting the temporal context in clean estimated speech,
in addition to noisy input speech would be advantageous, is tested in this
section. To do this we constructed an experiment in which the two CGM
structures were operated without the benefit of adversarial training, and com-
pared directly with their matching baseline systems. PESQ and STOI results
are shown in Table 2, for both matched and mismatched noise experiments
in each system. Each CGM was operated with α = 0 to disable adversarial
training. For comparison, scores are also given for un-enhanced noisy input
speech.



A Conditional Generative Model for Speech Enhancement 11

Table 3 Exploring the benefit of increasing temporal context. PESQ and STOI are assessed
for various CGM configurations in different levels of machined and unmatched noise, both
with adversarial training (α = 0.5) and without (α = 0). The gain in score achieved by the
additional temporal context is given as a percentage, for each noise level.

Matched noise Mismatched noise
dB SNR α -5 0 5 10 -5 0 5 10 Mean

PESQ

CGMS 0 2.250 2.684 3.006 3.260 2.018 2.427 2.770 3.081 2.687
CGML 0 2.486 2.900 3.188 3.407 2.006 2.443 2.809 3.131 2.796
CGMS 0.5 2.280 2.727 3.049 3.291 2.046 2.440 2.778 3.075 2.711
CGML 0.5 2.520 2.934 3.223 3.445 2.041 2.464 2.827 3.148 2.825
Gain S → L 10.5% 7.8% 5.9% 4.6% -0.4% 0.8% 1.6% 2.0% 4.1%

STOI

CGMS 0 0.781 0.864 0.916 0.948 0.722 0.825 0.893 0.937 0.861
CGML 0 0.840 0.899 0.935 0.958 0.720 0.827 0.897 0.942 0.877
CGMS 0.5 0.781 0.864 0.916 0.948 0.716 0.822 0.891 0.936 0.859
CGML 0.5 0.840 0.899 0.935 0.958 0.723 0.827 0.897 0.942 0.878
Gain S → L 7.6% 4.1% 2.1% 1.1% 0.3% 0.4% 0.6% 0.6% 2.0%

From this table, we can compare results for CGMS and DNN, which have
matching input context lengths, similar numbers of trainable parameters and
the same training criteria. The improvement in overall mean PESQ from 2.524
to 2.687, and STOI improvement from 0.827 to 0.861 comes about primarily
from the use of additional information contained within the estimated clean
speech context.

Similarly we can compare CGML and LSTM, where the CGM uses less
temporal context then LSTM, has fewer parameters and the same training
criteria, but includes the additional estimated clean speech context. This allows
the CGM to improve mean PESQ from 2.688 to 2.796 and STOI from 0.851
to 0.878.

Not only do the overall mean results improve through the use of estimated
clean speech context, but the PESQ and STOI are improved for every tested
level of noise in both noise conditions. There is thus a clear benefit obtained
from incorporating past clean estimated speech frames in the model for sub-
sequent frames.

4.2 Increasing temporal context

The two CGMs, with different temporal context lengths (9 and 31 respec-
tively), were operated both with and without adversarial training, to determine
whether increased temporal context was beneficial to performance. Results are
shown in Table 3 for the tested noise levels in both matched and mismatched
conditions. A percentage improvement in PESQ and STOI is given for each
noise level and condition, as a separate row below the results for each evalua-
tion type.

It can be seen that the improvement from additional context is almost
(but not quite) identical when α = 0 to when α = 0.5, but in both cases, the
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Table 4 Exploring the benefit of adversarial training. PESQ and STOI are assessed for
various system configurations in different levels of machined and unmatched noise, both
with adversarial training (α = 0.5) and without (α = 0).

Matched noise Mismatched noise
dB SNR α -5 0 5 10 -5 0 5 10 Mean

PESQ

Noisy speech 1.376 1.716 2.075 2.432 1.487 1.840 2.199 2.544 1.959
DNN 0 1.967 2.449 2.820 3.084 1.876 2.322 2.686 2.985 2.524
DNN 0.5 2.157 2.633 2.997 3.270 1.918 2.346 2.711 3.028 2.633
LSTM 0 2.289 2.712 3.006 3.230 1.955 2.415 2.791 3.104 2.688
LSTM 0.5 2.335 2.760 3.060 3.293 1.969 2.425 2.803 3.120 2.721
CGMS 0 2.250 2.684 3.006 3.260 2.018 2.427 2.770 3.081 2.687
CGMS 0.5 2.280 2.727 3.049 3.291 2.046 2.440 2.778 3.075 2.711
CGML 0 2.486 2.900 3.188 3.407 2.006 2.443 2.809 3.131 2.796
CGML 0.5 2.520 2.934 3.223 3.445 2.041 2.464 2.827 3.148 2.825
Adv. Gain 3.3% 2.9% 2.6% 2.4% 1.5% 0.7% 0.6% 0.6% 1.8%

STOI

Noisy speech 0.597 0.710 0.812 0.889 0.612 0.717 0.812 0.888 0.755
DNN 0 0.721 0.821 0.884 0.922 0.683 0.798 0.872 0.917 0.827
DNN 0.5 0.764 0.849 0.902 0.935 0.699 0.806 0.878 0.923 0.845
LSTM 0 0.791 0.862 0.904 0.931 0.701 0.811 0.881 0.923 0.851
LSTM 0.5 0.798 0.866 0.908 0.935 0.702 0.811 0.882 0.924 0.853
CGMS 0 0.781 0.864 0.916 0.948 0.722 0.825 0.893 0.937 0.861
CGMS 0.5 0.781 0.864 0.916 0.948 0.716 0.822 0.891 0.936 0.859
CGML 0 0.840 0.899 0.935 0.958 0.720 0.827 0.897 0.942 0.877
CGML 0.5 0.840 0.899 0.935 0.958 0.723 0.827 0.897 0.942 0.878
Adv. Gain 1.6% 0.9% 0.6% 0.5% 0.5% 0.2% 0.1% 0.2% 0.6%

benefit is greatest at the lowest SNR levels in matched noise but the highest
SNR levels in mismatched noise. For example, the additional context improves
PESQ by 10.5% at -5 dB SNR in matched noise and by 2.0% at 10 dB SNR
in mismatched noise. This result is due to the ability of the underlying model
to compensate effectively for familiar noise at even severe levels of corruption
(i.e. using the learnt noise temporal context to improve its understanding of
the noise in the matched conditions), and use the same ability in mismatched
conditions, but applied to the inherent temporal correlation in the speech (i.e.
to exploit the longer temporal context of the speech in unfamiliar noise).

4.3 The effect of adversarial training

Table 4 presents results that compare each system, operated with adversarial
training (α = 0.5) to the same system without adversarial training (α = 0).
Scores are given for un-enhanced noisy input speech, as well as baseline DNN
and LSTM systems operating as G in the adversarial training architecture.
The ‘Adv. gain’ row along the bottom of the PESQ and STOI sections shows
the overall percentage improvement in each score due to the use of adversarial
training. Clearly, the main benefits are obtained for the PESQ score in the
highest levels of matched noise (3.3%), but it is shown to be beneficial under
all of the tested conditions.
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Table 5 Performance improvement over baseline for final CGM architectures incorporating
adversarial training and temporal context from past estimated clean speech frames.

Matched noise Mismatched noise
dB SNR -5 0 5 10 -5 0 5 10

PESQ

DNN → CGMS 15.9% 11.4% 8.1% 6.7% 9.1% 5.1% 3.4% 3.0%
LSTM → CGML 10.1% 8.2% 7.2% 6.7% 4.4% 2.0% 1.3% 1.4%
Noisy → CGML 83.1% 71.0% 55.3% 41.7% 37.3% 33.9% 28.6% 23.7%

STOI

DNN → CGMS 8.3% 5.2% 3.6% 2.8% 4.8% 3.0% 2.2% 2.1%
LSTM → CGML 6.2% 4.3% 3.4% 2.9% 3.1% 2.0% 1.8% 2.1%
Noisy → CGML 40.7% 26.6% 15.1% 7.8% 18.1% 15.3% 10.5% 6.1%

4.4 Summary of improvements

Combining the three factors of adversarial training in the new architecture
with the incorporation of temporal context from past estimated clean speech
frames, for both long and short temporal context, the overall improvement for
each tested noise condition is shown in Table 5. The final row for PESQ and
STOI shows the improvement gained over un-enhanced (noisy) speech by the
best architecture (CGML with adversarial training). Examining the results,
the proposed CGM architecture outperforms the baseline systems on every
test case, and provides a very significant enhancement.

4.5 Smoothing effects

To further study how CGM with adversarial training affects spectral over-
smoothing, log domain spectrograms from one utterance in the test set are
reproduced in Fig. 3 and Fig. 4 for various conditions. For ease of compar-
ison, one unvoiced speech part and one voiced speech part are marked with
rectangles respectively in each spectrogram.

In white noise conditions (matched noise), when the MMSE criterion was
employed, from Fig. 3(a)(c), we can see the effects of spectral over-smoothing in
both unvoiced and voiced speech parts for DNN and LSTM enhanced speech.
However, in Fig. 3(e)(g), CGMs restored some details of both the unvoiced
and voiced parts that were lost by DNN or LSTM.

Meanwhile, the effect of adversarial training is shown in Fig. 3 bottom row,
namely subplots (b), (d), (f) and (h). For each of DNN, LSTM and CGM,
over-smoothing is slightly reduced in unvoiced and voiced parts compared to
subplots (a), (c), (e) and (g) in the row above. Results in the m109 noise
condition (mismatched noise) reveal roughly similar trends, as shown in Fig.
4.

It is worth noting that adversarial training yielded more significant im-
provements for DNN and LSTM than for CGMs. This may be due to the
fact that over-smoothed spectra generated by DNN or LSTM will result in
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larger GAN loss. Therefore, the GAN loss gradients provided by the discrim-
inator have a larger effect on the training of DNN or LSTM generators. On
the contrary, the CGM itself is able to generate more realistic spectra, which
are harder for the discriminator to distinguish. So GAN loss and gradients
are smaller than for the DNN or LSTM generators. As a result, adversarial
training has a smaller beneficial effect on the CGM. This may also explain
why adversarial training obtained better PESQ and STOI improvement for
DNN or LSTM than for CGM in Table 4.

These results demonstrate that the adversarial training scheme and the
CGM architecture are both beneficial for alleviating spectral over-smoothing,
while the combination of both CGM architecture and adversarial training per-
form even better. This is very much in line with the numerical PESQ and STOI
results.

Fig. 3 Spectrograms of one utterance from the test set, showing original clean, noisy and
all enhanced versions. The clean utterance was corrupted by white noise (matched noise) at
SNR = 0 dB. PESQs for these utterances are: (a) 2.404; (b) 2.462; (c) 2.573; (d) 2.696; (e)
2.683; (f) 2.714; (g) 2.842; (h) 2.891; (i) 1.327. A voiced and an unvoiced region have been
outlined with rectangles in each processed spectrogram.

4.6 Overall comparison of various methods

Apart from DNN, LSTM and our proposed methods, a model trained ac-
cording to [?], denoted here as Multi-Obj, was also included for compari-
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Fig. 4 Spectrograms of one utterance from the test set, showing original clean, noisy and
all enhanced versions. The clean utterance was the same as in Fig 3, and was corrupted by
m109 noise (mismatched noise) at SNR = 0 dB. PESQs for these utterances are: (a) 2.511;
(b) 2.531; (c) 2.573; (d) 2.568; (e) 2.693; (f) 2.675; (g) 2.764; (h) 2.798; (i) 2.074. A voiced
and an unvoiced region have been outlined with rectangles in each processed spectrogram.

son. Like DNN, Multi-Obj consisted of 3 hidden layers with 2048 ReLU ac-
tivation units per layer. The input comprised a context of 9 frames of 257-
dimensional log magnitude spectrum and 41-dimensional Mel-Frequency Cep-
stral Coefficient (MFCC) of noisy speech, i.e. an input vector dimension of
9 × (257 + 41) = 2682. The outputs were one frame of 257-dimensional log
magnitude spectrum and 41-dimensional MFCC of estimated clean speech,
plus one frame of 257-dimensional Ideal Binary Mask (IBM) [?]. Other set-
tings followed [?]: Dropout, mean and variance normalization and Adam al-
gorithm were applied for training, while batch normalization was not used.
During inference, the post-processing method proposed in [?] was adopted.

Table 6 presents the comparison of model size (in terms of number of
parameters), computational complexity (in terms of number of multiplication
for estimating per frame of clean spectrum), mean PESQ and STOI of various
methods. As discussed in Section 4.3, adversarial training (α=0.5) improved
PESQ and STOI without increasing model size and computational complexity.
For example, adversarial training raised the PESQ of DNN from 2.524 to 2.633,
and STOI from 0.827 to 0.845. Moreover, CGML α=0.5 achieved the best
PESQ and STOI, with the smallest model size and computational complexity.
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Table 6 Comparison of various methods, in terms of model size, computational complexity,
mean PESQ and STOI. Multi-Obj was trained according to [?]. α=0 and α=0.5 denote as
without and with adversarial training respectively.

Model
Model size Computational complexity

PESQ STOI
(million) (multiplication per frame)

Noisy speech – – 1.959 0.755
DNN α=0 13.7 1.37× 107 2.524 0.827
DNN α=0.5 13.7 1.37× 107 2.633 0.845
LSTM α=0 13.7 1.36× 107 2.688 0.851
LSTM α=0.5 13.7 1.36× 107 2.721 0.853
CGMS α=0 13.7 1.77× 107 2.687 0.861
CGMS α=0.5 13.7 1.77× 107 2.711 0.859
CGML α=0 12.3 1.12× 107 2.796 0.877
CGML α=0.5 12.3 1.12× 107 2.825 0.878
Multi-Obj 15.0 1.50× 107 2.634 0.850

5 Conclusion

This paper has proposed a conditional generative model (CGM) equipped with
an adversarial training scheme for speech enhancement. The novel method is
designed to exploit temporal context information from the spectra of both
noisy and past estimated clean speech, in contrast to conventional schemes
that tend to exploit only noisy input speech context. Experimental results re-
veal that CGM outperforms conventional DNN and LSTM models in terms
of PESQ and STOI. Meanwhile, the architecture of CGM and the adversar-
ial training scheme both appear to be effective at alleviating spectral over-
smoothing, particularly when operating in conjunction with each other.

In this paper, the discriminator only determines whether its one frame of
input magnitude spectrum is from real or fake data, but ignores the context
information in the sequence of clean spectra. This characteristic limits the
resolving power of the discriminator. Moreover, the generator needs F frames
of future noisy spectrum to estimate current clean spectrum, which results in
a time delay during inference. While current performance is good, additional
experiments on expanded network structures and larger datasets are planned
in the future.
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