Skip to main content
Log in

Eigenvalue Decomposition of Hankel Matrix-Based Time-Frequency Representation for Complex Signals

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

The analysis of non-stationary signals using time-frequency representation (TFR) presents simultaneous information in time and frequency domain. Most of TFR methods are developed for real-valued signals. In several fields of science and technology, the study of unique information presented in the complex form of signals is required. Therefore, an eigenvalue decomposition of Hankel matrix-based TFR method, which is a data-driven technique, has been extended for the analysis of complex-valued signals. In this method, the positive and negative frequency components of complex signals are separately decomposed using recently developed eigenvalue decomposition of Hankel matrix-based method. Further, the Hilbert transform is applied on decomposed components to obtain TFR for both positive and negative frequency ranges. The proposed method for obtaining TFR is compared with the existing methods. Results for synthetic and natural complex signals provide support to the proposed method to perform better than compared methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. M.U.B. Altaf, T. Gautama, T. Tanaka, D.P. Mandic, Rotation invariant complex empirical mode decomposition. in IEEE International Conference on Acoustics, Speech and Signal Processing, 2007 (ICASSP 2007), vol. 3, pp. III–1009 (2007)

  2. V. Bajaj, R.B. Pachori, Classification of seizure and nonseizure EEG signals using empirical mode decomposition. IEEE Trans. Inf Technol. Biomed. 16, 1135–1142 (2012)

    Article  Google Scholar 

  3. D. Bhati, R.B. Pachori, V.M. Gadre, A novel approach for time-frequency localization of scaling functions and design of three-band biorthogonal linear phase wavelet filter banks. Digit. Signal Proc. 69, 309–322 (2017)

    Article  Google Scholar 

  4. A. Bhattacharyya, R.B. Pachori, A multivariate approach for patient specific EEG seizure detection using empirical wavelet transform. IEEE Trans. Biomed. Eng. 64, 2003–2015 (2017)

    Article  Google Scholar 

  5. A. Bhattacharyya, L. Singh, R.B. Pachori, Fourier–Bessel series expansion based empirical wavelet transform for analysis of non-stationary signals. Digit. Signal Proc. 78, 185–196 (2018)

    Article  Google Scholar 

  6. B. Bjelica, M. Dakovic, L. Stankovic, T. Thayaparan, Complex empirical decomposition method in radar signal processing, in Proceedings of 2012 Mediterranean Conference on Embedded Computing (MECO) (2012). pp. 88–91

  7. L. Cohen, Time-Frequency Analysis, vol. 778 (Prentice Hall PTR, Englewood Cliffs, NJ, 1995)

    Google Scholar 

  8. I. Daubechies, Ten Lectures on Wavelets (SIAM, Philadelphia, 1992)

    Book  MATH  Google Scholar 

  9. I. Daubechies, J. Lu, H.T. Wu, Synchrosqueezed wavelet transforms: an empirical mode decomposition-like tool. Appl. Comput. Harmonic Anal. 30, 243–261 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. K. Dragomiretskiy, D. Zosso, Variational mode decomposition. IEEE Trans. Signal Process. 62, 531–544 (2014)

    Article  MathSciNet  Google Scholar 

  11. M.G. Frei, I. Osorio, Intrinsic time-scale decomposition: time-frequency-energy analysis and real-time filtering of non-stationary signals, in Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences vol. 463 (The Royal Society, London, 2007). pp. 321–342

  12. Y. Gao, E. Sang, Z. Shen, Comparison of EMD and complex EMD in signal processing, in Congress on Image and Signal Processing, 2008 vol. 1 (IEEE, New York, 2008). pp. 141–145

  13. J. Gilles, Empirical wavelet transform. IEEE Trans. Signal Process. 61, 3999–4010 (2013)

    Article  MathSciNet  Google Scholar 

  14. N.E. Huang, Z. Shen, S.R. Long, M.C. Wu, H.H. Shih, Q. Zheng, N.C. Yen, C.C. Tung, H.H. Liu, The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis, in Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 1971 (The Royal Society, London, 1998). pp. 903–995

  15. IEM-AWOS data, https://mesonet.agron.iastate.edu/awos/. Iowa State University, USA (2017)

  16. P. Jain, R.B. Pachori, GCI identification from voiced speech using the eigen value decomposition of Hankel matrix, in 8th International Symposium on Image and Signal Processing and Analysis (2013). pp. 371–376

  17. P. Jain, R.B. Pachori, Event-based method for instantaneous fundamental frequency estimation from voiced speech based on eigenvalue decomposition of the Hankel matrix. IEEE/ACM Trans. Audio, Speech Language Process. 22, 1467–1482 (2014)

    Article  Google Scholar 

  18. P. Jain, R.B. Pachori, An iterative approach for decomposition of multi-component non-stationary signals based on eigenvalue decomposition of the Hankel matrix. J. Franklin Inst. 352, 4017–4044 (2015)

    Article  Google Scholar 

  19. D. Looney, D.P. Mandic, Fusion of visual and thermal images using complex extension of EMD, in Second ACM/IEEE International Conference on Distributed Smart Cameras, 2008. ICDSC 2008 (2008). pp. 1–8

  20. D. Looney, D.P. Mandic, Multiscale image fusion using complex extensions of EMD. IEEE Trans. Signal Process. 57, 1626–1630 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. S. Mallat, A Wavelet Tour of Signal Processing (Academic Press, Cambridge, 1999)

    MATH  Google Scholar 

  22. R.B. Pachori, A. Nishad, Cross-terms reduction in the Wigner-Ville distribution using tunable-Q wavelet transform. Sig. Process. 120, 288–304 (2016)

    Article  Google Scholar 

  23. R.B. Pachori, P. Sircar, A new technique to reduce cross terms in the wigner distribution. Digit. Signal Proc. 17, 466–474 (2007)

    Article  Google Scholar 

  24. R.B. Pachori, P. Sircar, Analysis of multicomponent AM-FM signals using FB-DESA method. Digit. Signal Proc. 20, 42–62 (2010)

    Article  Google Scholar 

  25. C. Park, D. Looney, M.M. Van Hulle, D.P. Mandic, The complex local mean decomposition. Neurocomputing 74, 867–875 (2011)

    Article  Google Scholar 

  26. N. Rehman, D.P. Mandic, Multivariate empirical mode decomposition, in Proceedings of The Royal Society of London A: Mathematical, Physical and Engineering Sciences (The Royal Society, London, 2009). p. rspa.2009.0502

  27. P. Richardson, J. Price, D. Walsh, L. Armi, M. Schröder, Tracking three meddies with sofar floats. J. Phys. Oceanogr. 19, 371–383 (1989)

    Article  Google Scholar 

  28. G. Rilling, P. Flandrin, P. Gonçalves, J.M. Lilly, Bivariate empirical mode decomposition. IEEE Signal Process. Lett. 14, 936–939 (2007)

    Article  Google Scholar 

  29. R.R. Sharma, P. Chandra, R.B. Pachori, Electromyogram signal analysis using eigenvalue decomposition of the Hankel matrix, in Proceedings of the International Conference on Machine Intelligence and Signal Processing (Springer, Berlin, 2017)

  30. R.R. Sharma, M. Kumar, R.B. Pachori, Automated CAD identification system using time-frequency representation based on eigenvalue decomposition of ECG signals, in Proceedings of the International Conference on Machine Intelligence and Signal Processing (Springer, Berlin, 2017)

  31. R.R. Sharma, R.B. Pachori, Time-frequency representation using IEVDHM-HT with application to classification of epileptic EEG signals. IET Sci. Meas. Technol. 12, 72–82 (2017)

    Article  Google Scholar 

  32. R.R. Sharma, R.B. Pachori, A new method for non-stationary signal analysis using eigenvalue decomposition of the Hankel matrix and Hilbert transform, in Fourth International Conference on Signal Processing and Integrated Networks (SPIN 2017) Noida India (2017). pp. 484–488

  33. P. Singh, S.D. Joshi, R.K. Patney, K. Saha, The Fourier decomposition method for nonlinear and non-stationary time series analysis. Proc. R. Soc. A 473, 20160,871 (2017)

    Article  MathSciNet  Google Scholar 

  34. L. Stankovic, M. Dakovic, T. Thayaparan, Time-Frequency Signal Analysis with Applications (Artech House, Cambridge, 2014)

    MATH  Google Scholar 

  35. L. Stanković, D. Mandić, M. Daković, M. Brajović, Time-frequency decomposition of multivariate multicomponent signals. Sig. Process. 142, 468–479 (2018)

    Article  Google Scholar 

  36. Subsurface float data: http://www.aoml.noaa.gov/phod/float-traj/data.php. National Oceanic and Atmospheric Administration, USA (2017)

  37. T. Tanaka, D.P. Mandic, Complex empirical mode decomposition. IEEE Signal Process. Lett. 14(2), 101–104 (2007)

    Article  Google Scholar 

  38. R. Vautard, M. Ghil, Singular spectrum analysis in nonlinear dynamics, with applications to paleoclimatic time series. Physica D 35, 395–424 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  39. R. Vautard, P. Yiou, M. Ghil, Singular-spectrum analysis: a toolkit for short, noisy chaotic signals. Physica D 58, 95–126 (1992)

    Article  Google Scholar 

  40. Y. Wang, F. Liu, Z. Jiang, S. He, Q. Mo, Complex variational mode decomposition for signal processing applications. Mech. Syst. Signal Process. 86, 75–85 (2017)

    Article  Google Scholar 

  41. M.H. Yeh, The complex bidimensional empirical mode decomposition. Sig. Process. 92, 523–541 (2012)

    Article  Google Scholar 

  42. B. Yuan, Z. Chen, S. Xu, Micro-Doppler analysis and separation based on complex local mean decomposition for aircraft with fast-rotating parts in ISAR imaging. IEEE Trans. Geosci. Remote Sens. 52, 1285–1298 (2014)

    Article  Google Scholar 

  43. X. Zhang, Comparison of EMD based image fusion methods. Int. Conf. Comput. Autom. Eng. 2009, 302–305 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rishi Raj Sharma.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, R.R., Pachori, R.B. Eigenvalue Decomposition of Hankel Matrix-Based Time-Frequency Representation for Complex Signals. Circuits Syst Signal Process 37, 3313–3329 (2018). https://doi.org/10.1007/s00034-018-0834-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-018-0834-4

Keywords

Navigation