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Abstract A Field Programmable Gate Array (FPGA) based parallel architec-
ture for the real-time and online implementation of the bivariate extension of
the empirical mode decomposition (EMD) algorithm is presented. Multivariate
extensions of EMD have attracted significant attention in recent years owing to
their scope in applications involving multichannel and multidimensional data
processing, e.g. biomedical engineering, condition monitoring, image fusion.
However, these algorithms are computationally expensive due to the empirical
and data-driven nature of these methods. That has hindered the utilisation
of EMD, and particularly its bivariate and multivariate extensions, in real-
time applications. The proposed parallel architecture is aimed at bridging this
gap through real-time computation of the bivariate EMD algorithm. The crux
of the architecture is the simultaneous computation of multiple signal projec-
tions, locating their local extrema and finally the calculation of their associated
complex valued envelopes for the estimation of local mean. The architecture is
implemented on a Xilinx Kintex 7 FPGA, and offers significant computational
improvements over the existing software based sequential implementaions of
bivariate EMD.
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1 Introduction

Empirical Mode Decomposition (EMD) [10] decomposes an input signal into
a finite number of multiple inherent scales residing in the data. Those result-
ing intrinsic oscillations are termed intrinsic mode functions (IMFs). Unlike
traditional multi-resolution and time-frequency methods, which employ fixed
a priori basis functions, EMD by its very nature employs data-driven basis
functions, thus, enabling more accurate signal representations. Furthermore,
EMD operates at the level of signal extrema, making its operation highly lo-
calised as compared to other incumbent approaches [14]. The IMFs Ay, (t) of
input z(t) are extracted from EMD as follows:

M
o(t) =Y hu(t) + (1) (1)

Next, the Hilbert Transform (HT) is applied to each h,,(t) separately to
obtain physically meaningful estimates of instantaneous frequencies of z(t),
yielding the so-called Hilbert Huang Spectrum (HHS) [10]. As indicated above,
the key features of EMD include: i) local and non-linear operation at the level
of signal extrema and ii) data-driven nature owing to the data adaptive basis
functions used to decompose an input signal. These properties enable EMD to
perform better than standard linear time-frequency (scale) methods, such as
the short-time Fourier transform and the discrete wavelet transform employed
in many real world applications involving nonlinear and non-stationary data
[14]. Specifically, EMD has recently found numerous applications ranging from
biomedical engineering [15], data fusion [19] and condition monitoring [26].

In its original formulation, EMD can only process signals containing a
single channel (univariate data). Its important extensions for multichannel
data include: i) Complex EMD (CEMD) [22]; ii) Rotation-invariant EMD
(RI-EMD) [3]; iii) Bivariate EMD (BEMD) [21] and iv) Multivariate EMD
(MEMD) [18]. Among those extensions, MEMD operates for data containing
more than two channels, whereas the remaining extensions are all designed for
complex/bivariate data, consisting of up to two channels. A critical task in
multichannel EMD extensions is the estimation of the multivariate local mean
of the input signal based on its extrema. This is not a trivial task, however,
and is performed by projecting the multivariate signal along different static
but uniform directions in multidimensional space to obtain real-valued projec-
tions; interpolating the extrema locations of projected real-valued signals; and
finally calculating their mean. For complex/bivariate data, BEMD has shown
a considerable potential for signal decomposition and its subsequent analysis
and processing [17].

Despite the popularity of EMD and its multichannel extensions in signal
decomposition and analysis, major obstacles for its real-time and online appli-
cations include: i) significant computational requirements of EMD based algo-
rithms owing to their data driven nature, and ii) the lack of optimal hardware
architectures and implementations for their efficient computation. While few
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parallel hardware implementations of standard univariate EMD are available
(discussed below), only C and MATLAB based sequential implementations of
multichannel extensions of EMD currently exist, limiting their usage solely to
off-line applications with no real-time constraints. To that end, a novel parallel
hardware architecture for efficient computation of BEMD is proposed based
on Field Programmable Gate Arrays (FPGAs).

The proposed architecture is the first ever FPGA based parallel hardware
design for computing the bivariate extension of EMD. As mentioned before,
local mean estimation in BEMD requires computation of multiple (> 2) signal
projections and their corresponding complex envelopes. The proposed architec-
ture computes these simultaneously, which significantly reduces the processing
time as compared to the sequential BEMD implementations. The number of
iterations for each IMF are customized in our architecture which are computed
by individual modules and connected serially to form a pipeline structure. The
sampling frequency in the proposed implementation can reach up to 25 MHz
which makes it suitable for the online computation of complex signals.

The paper is organized as follows: Section II provides a short review of
parallel implementations of EMD and BEMD. Section III presents algorith-
mic details of the BEMD algorithm. Section IV gives details of the proposed
FPGA design of BEMD, with the main emphasis on the complex envelope
and local mean estimation process, which is the crux of the BEMD operation.
Section V reports results of experiments conducted on synthetic and natu-
ral bivariate data sets using the proposed architecture. Finally, Section VI
provides concluding remarks and gives some ideas for relevant future work.

2 Related work

Among the handful of parallel implementations of EMD, a GPU based imple-
mentation of EMD proposed by Waskito et al. [25] achieved an approximately
28 times speedup over the sequential C implementation of EMD. Similarly,
Chen et al., reported a speedup of 31 times for their GPGPU-aided Ensemble
EMD implementation over the serial C implementation of the same algorithm
[5]. Recently, a couple of parallel implementations of Multidimensional En-
semble EMD (MEEMD) algorithm have been proposed, based on OpenMP
and CUDA programming models respectively [4], again reporting significant
speedup when compared against the sequential implementations.

A hardware accelerated EMD implementation was proposed in [24], whereby
an FPGA was employed as a hardware accelerator, while the main EMD com-
putation was still performed in software. In [11], an FPGA was used as data
flow controller while the core EMD algorithm was implemented on a DSP chip.
The tasks of the data controller based on a FPGA included relaying data of
1000 samples length to the DSP, data transfer from the ADC to the DSP, from
the DSP back to a DAC. As expected, both the above designs are limited in
their performance output, since the core EMD algorithm is not computed in
the FPGA.



4 Q. W. Malik, N. Rehman, S. Gull, S. Ehsan, K. M. Maier

A first FPGA based real-time EMD architecture was proposed in [8]. In
that architecture, the FPGA computed upper and lower envelopes of input
data in parallel to attain real-time processing of the EMD operation. The
interpolation of maximum and minimum points to obtain upper and lower
envelopes respectively was performed using a saw-tooth method and multiple
modules were added serially to compute each iteration of an IMF, thus enabling
a pipeline structure. The method can process signals with sampling frequency
of up to 12.5 MHz, a significant improvement over the DSP-FPGA based
architecture [11] which could only handle sampling frequencies up to 1 KHz.

For BEMD, only sequential MATLAB and C++ based software imple-
mentations are currently available [6], which limit the utilisation of BEMD to
non real-time applications. The FPGA based architecture proposed here for
BEMD is the first attempt to alleviate this problem and enable BEMD to be
used for real-time applications.

While the proposed architecture for BEMD computation can be seen as
an extension of the one proposed in [8] for EMD, there are also significant
differences between the two architectures owing to the algorithmic differences
between EMD and BEMD. Specifically, the local mean computation in BEMD
is achieved by taking multiple real-valued projections of the input signal in 2-
D space in contrast to the fixed 2 projections in EMD. That results in the
following architectural differences in the proposed work as compared to [8].

— The input signal is projected along multiple directions in 2-D space with
the help of Data Projection block, which is not present in [8].

— Complex interpolation is carried out by computing the real and imaginary
components of each projected signal simultaneously.

— A complex envelope is computed for each projection independently, and
mean of all these complex envelops yield the local mean.

— Exrema detection module in the proposed architecture is also improved to
get better results as compared to [8].

3 Bivariate Empirical Mode Decomposition

The bivariate extension of empirical mode decomposition extends the intuitive
notion of ‘oscillations’ in standard EMD to its two dimensional counterpart
- rotations. It operates by projecting an input bivariate signal in V' different
directions in 2D space, with each direction vector defined based on equidis-
tant points along a unit circle in 2D. Next, the corresponding complex-valued
envelopes for each direction are obtained by interpolating the extrema of pro-
jected signals via component-wise interpolation'; these envelopes are then av-
eraged to obtain the local mean. The larger the number of directions employed
in BEMD, i.e. larger the value of V, the more accurate the estimate of the
envelope. Assuming four directions, the center of the envelopes at a point

1 Any interpolation scheme can be used for this purpose, though the cubic spline inter-
polation is the most widely used.
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in space is given by the barycenter of the four points. For a given complex-
valued input signal z(t), the details of a single sifting operation within BEMD
are summarised in Algorithm 1.

Algorithm 1 The sifting process in BEMD

1: Given a complex-valued (bivariate) input signal z(t), obtain V signal projections,
{we, (t)}V_,, along uniform directions 6, via

v=1"
wp, (t) = R 2(t)) 2)
where R(-) denotes the real part of a complex number, and 6, = 2vn/V forv=1,...,V;
2: Find the locations {t}’}gzl corresponding to the maxima of {wy, (£)}V_;;

3: Interpolate (using saw tooth or spline interpolation) between the maxima points
[t%, z(t})], to obtain the envelope curves {eg, W
4: Calculate the bivariate mean, ma(t), of all the envelope curves

\4
ma() = 5 Y ea, () ®)
v=1

5: Subtract m(t) from the input signal z(¢) to yield an oscillatory component d(t).

The remainder of the method is similar to the standard univariate EMD,
that is, if the oscillatory component d(t), obtained by subtracting the local
mean m(t) from the input signal z(¢), meets the stoppage criterion for bivariate
IMF, then the process is re-applied to z(t) — d(t), otherwise, it is applied to
d(t). The stopping criterion used with the BEMD algorithm is similar to the
criterion employed for the standard EMD [9].

4 FPGA based Hardware Architecture of BEMD

The proposed architecture exploits the inherent parallelism in the BEMD algo-
rithm to yield a pipelined structure for the real-time computation of BEMD. In
our hardware architecture, the S number criterion is employed within BEMD,
which is a simple, yet effective method for real-time implementation of BEMD.
The S number criterion defines that there are customized number of iterations
to generate an IMF'. It is suggested that the value of S should be in the range of
3 to 5 to generate a suitable IMF [9]. The proposed implementation is tested to
yield two IMFs and a residue only, though owing to our modular architecture,
additional IMF modules can be cascaded to yield more than two IMFs.

4.1 Overall BEMD Operation

Fig. 1 shows the operation of the proposed hardware BEMD implementation
via a block diagram. Here, z(t) denotes a 16-bit bivariate input signal, which
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Fig. 1 Block diagram showing all the main blocks in the proposed Kintex 7 XC7K480T
based FPGA architecture for BEMD.

is taken from an external ADC with a sampling frequency equal to the clock
rate of the proposed system, i.e. 25 MHz. {h}, h2 ... h{} are the set of S out-
puts of basic BEMD iteration blocks corresponding to the first IMF which are
cascaded for continuous and sequential data output. The input z(¢) is concur-
rently delivered to the projection block which projects the input signal z(t)
in V directions, and to the extrema detection and interpolation block, which
along with V signal projections detects the extrema points of the input signal.
These extrema points are interpolated to generate V' complex envelopes and
the mean of these envelopes is subtracted from the delayed input to produce
hi(t), the output of first iteration, which in turn becomes the input for sec-
ond iteration block. The IMF 1 hq(t) is the output of S-th iteration which is
subtracted from the delayed input z(t) and the residue becomes the input of
next iteration block for the computation of IMF 2, ho(t). Thus, the output of
every S-th iteration block is an IMF (also 16-bit) in our case, which is sub-
tracted from the ‘delayed’ input to yield a residue signal. Subsequently, the

hy(®)

hy(1)
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Fig. 2 Block diagram illustrating the sifting operation of BEMD for a single complex IMF
calculation.

residue signal is used as input to the next block to yield the second IMF and
so on. Note that S denotes the number of customised iterations used in our
architecture to obtain a single IMF; S = 5 iterations are used in our work.

It is important to note that there are two types of delays shown in Fig.
1: one of them is associated with each iteration block and is responsible to
add delay (equal to time required to compute local mean) to the input of that
iteration block such that the local mean can be subtracted from delayed input.
The other is associated with each IMF block and is responsible for adding delay
to the input of IMF block, in order to subtract the output of last iteration in
that IMF block from the delayed input to yield an IMF and a residue.

h(t)
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4.2 Sifting Algorithm for Complex IMF Extraction

The proposed architecture of a single iteration block of the BEMD is shown in
Fig. 2. As indicated in the step 1 of the Algorithm 1, V' real-valued projections,
denoted by w1 (), wa(t), ..., wy(t), of the input bivariate signal z(t) are first
obtained through eq. (2). Next, those projections along with the input signal
z(t) are used to generate the envelopes of z(t) corresponding to each projec-
tion; the resulting complex envelopes? are denoted by {e1(t),ea(t),...,ev(t)}
respectively.

As shown in Fig. 2, the complex envelopes are computed in parallel, to
reduce the processing time of the algorithm. The local mean of z(¢), denoted
by m(t), is then estimated by taking the mean of all V' complex envelopes
utilising eq. (3). In hardware, that simply requires addition of multiple en-
velopes (discrete signals) and division by a constant. Finally, the output of a
single iteration block is obtained by subtracting the local mean m(t) from the
delayed input signal z(t) in accordance with the step 5 of Algorithm 1. Shift
registers are employed to delay z(t), where the number of shift registers used
are equal to the number of clock cycles by which the mean envelope lags the
input z(t).

Note that the above block for performing a single sifting iteration within
BEMD highlights the major architectural difference between our proposed sys-
tem and that in [8]. For the case of EMD, the corresponding block is shown
in Fig. 5 in [8]. There, the design looks quite simple since only two envelopes
(upper and lower) are required to compute the local mean via their averag-
ing. However, in BEMD, the local mean computation is not a trivial task,
since multiple envelopes in different directions in the 2D space are required to
compute the local mean, as discussed in the previous section. It can be seen
from Fig. 2 that it consists of a signal projection block, which computes mul-
tiple signal projections in different directions in the 2D space. It is followed
by the computation of multiple complex envelopes (one for each projection)
via complex interpolation of extrema points of each projection. The complex
interpolation is carried out by computing the real and imaginary components
of the each projected signal simultaneously as shown in Fig. 2.

4.3 Complex Envelope Estimation

This section presents the architecture for the complex envelope estimation
module in BEMD. As indicated in the step 3 of the Algorithm 1, the construc-
tion of complex-valued envelopes in BEMD is achieved by applying saw tooth
interpolation on real and imaginary components of input z(¢) separately. In
the proposed architecture, saw tooth interpolation on both the components is
performed in parallel. It is also assumed that the sampling frequency of input
data is the same as the clock frequency of FPGA.

2 The detailed design and implementation for multiple complex envelope generation is
discussed in the next sub-section.
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Fig. 3 Block diagram showing the processes of extrema identification and subsequent linear
saw tooth spline interpolation to obtain complex envelopes in the BEMD.

Fig. 3 shows the block diagram of the module responsible for the complex
valued envelope computation. The input Y;, is sent to the 16-bit buffer reg-
isters Reg A, Reg B and Reg C, while the values of projections {w,(t)}V_,
(denoted by W in the figure) are sent to the buffer registers Reg X, Reg Y
and Reg Z; all the buffer registers are 16-bit wide. The values in each register
are shifted to the next register at every clock cycle; for instance, the current
values of Y;, and W would reach the Reg C and the register Reg Z in three
clock cycles respectively.

To identify maxima locations and their corresponding values, the value in
Reg Y is compared with those in Reg X and Reg Z using two comparator
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(a) (b)

Fig. 4 Illustration of improved extrema detection scheme in the proposed architecture.
(a) data series with all unequal extrema points; (b) data series including equal values (flat
porions) at extrema locations.

blocks. Each comparator block utilises a maxima detection condition and a
maxima is detected if any of the following two conditions is fulfilled:

1. The value in Reg Y is taken as maxima, if it is greater than or equal to
the value in Reg X and greater than Reg Z, i.e. Y is maxima if ¥ > X
and Y > Z.

2. The value in Reg Y will also be taken as maxima if it is greater than the
value in Reg X, and greater than or equal to the value in Reg 7, i.e. Y is
amaximaif Y > X and Y > 7.

In the proposed architecture, we include an improved exterma detection
algorithm which, unlike the algorithm used in [8], can detect extrema points
on flat signal portions. To illustrate the improvement of the proposed design
over that in [8], consider two signals which are shown in Fig. 4. Both designs
can identify extrema points ‘b’ and ‘d’ as maxima in the test signal shown
in Fig. 4(a). However, the design in [8] fails to identify any maxima points in
Fig. 4(b), due to the fact that signal extrema reside on flat signal porion. As
a result, we observed that the architecture in [8] was not able to effectively
decompose real world signals, as it tended to miss some important extrema
points. To alleviate this problem, we have designed an architecture which is
able to identify points ‘g’ and ‘i’ as maxima points in the test signal shown in
Fig. 4(b).

The outputs of these comparator blocks are connected to the inputs of an
XOR gate, which yields a logical high output, if any of the inputs are high.
The output of XOR will in turn trigger the following three modules:

1. It triggers the enable pin of a tri-state buffer En A, which will store the
value in Reg B (the value of the input signal corresponding to the projec-
tion maxima) at the first location of circular buffer Cir A.

2. It triggers the counter Ctr X, which counts the number of clock cycles
between two consecutive maxima. The value in the counter Ctr X is stored
at the first location of circular buffer Cir B and C'tr X is reset to zero.

3. Finally, it increments the input address counter In ADD, which provides
the address of circular buffers to store data.
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These three tasks are performed sequentially. Therefore, whenever a projec-
tion maxima is detected, the corresponding value of the input signal is stored
in Cir A and the interval between two consecutive maxima is stored in Cir B
at the current In ADD counter value.

The interpolation requires two maxima points for the continuous output
computation of envelope. Therefore an initial delay of d clock cycles is added,
before the output computation so that at least two maxima points are stored
in buffers Cir A and Cir B, prior to envelope computation. The value of d
should be selected, such that it is larger than any of the value stored in Cir B
(the largest interval between any two successive maxima).

Moreover, while selecting the value of d, the length of the circular buffers
should also be kept in mind, as very large values of d may result in overwrit-
ing the circular buffers. A larger value of d allows for a longer time span, a
larger delay, and better adaptability; however, more hardware resources are
consumed as a result. If the signal under study has fewer extrema points, the
value of d should be changed accordingly, as the maximum interval between
the two consecutive maxima or minima must be less the chosen value of d. In
the work presented here, the value of d = 40 was found to be a good estimate.

For envelope estimation, the values of Cir A and Cir B at the current
output address provided by Ctr o are copied to the envelope compute block
as shown in Fig. 3. The value of counter Ctr i is incremented every clock
cycle and it is reset whenever the value of i is one less than the value at the
current address of Cir B i.e. i = 0 if i = (Bx — 1). At the same time, the
value of output address counter Ctr o is incremented and the values at the
next locations of Cir A and Cir B are copied to the envelope compute block
for local mean estimation.

Due to the initial delay of d clock cycles plus some computational delay,
the output of envelope lags the input. The compute block computes the output
after every clock cycle utilising the following relation in accordance with the
saw tooth complex interpolation of the maxima points:

(Am — z;z_l) X 1 (4)

where x is the current output address, while A,, A,_1 and B, denote the
values of circular buffers C'ir A and Cir B at their respective addresses in the
subscript. When the output address counter C'tr o is incremented to = + 1,
the values of Cir A and Cir B at the address x — 1 are cleared. In this way
data is continuously relayed to the complex envelope estimation block, maxima
points are stored, the envelope is computed continuously and maxima points
are cleared.

The value of S = 5 is employed for the stopping criteria employed in the
proposed BEMD architecture; therefore, the output of every 5th iteration is
an IMF, that is, each IMF block is comprised of 5 iteration blocks. The IMF is
subtracted from the delayed input and the residue becomes the input of next
IMF block. The proposed architecture decomposed a complex valued input
signals into two IMFs and a residue. To obtain more than two IMFs using this

Yout = Am—l +
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architecture, more IMF-computing blocks can be easily added to the hardware
architecture.

5 Results and Analysis

The prototype implementation of the proposed BEMD computation architec-
ture was done on Xilinx FPGA (XC7K480T) using Verilog. The verilog code
was synthesized using ISE Xilinx 14.1 and post synthesis simulation results
are shown in the following figures. The prototype implementation consisted of
two IMF blocks, thereby decomposing a complex input signal into two complex
IMFs (hy and hs) and the residue r. In the experiments presented below, the
decomposition of the input signals was performed by using V' = 8 directions,
and S = 5 iterations were used to extract the individual components. The
sampling frequency was set to 25 MHz. The input data is first normalized and
rounded off to the nearest integers before being processed.

5.1 Case Study 1: Decomposition of Synthetic Data

This FPGA based BEMD implementation was evaluated by decomposing a
synthetic complex (bivariate) signal consisting of a combination of sinusoidal
components: the real component was composed of sinusoids of frequencies 100
kHz and 2500 kHz, whereas the imaginary part of the signal consisted of 1000
kHz and 100 kHz tones. N = 250 samples of the bivariate signal were taken and
customised S = 5 iterations were used to extract each IMF. V' = 8 direction
vectors were employed within BEMD to estimate the local mean.

The input signal used in the experiment is shown in the top row of Fig. 5
along with the decomposed IMFs in the subsequent rows. It can be noticed
from the decomposition that the highest frequency sinusoid (2500 KHz) is ex-
tracted in the real component of the first IMF, while the corresponding imagi-
nary IMF has negligible power. Similarly, the 1000 KHz tone is decomposed in
the imaginary part of the second IMF, with the corresponding real IMF almost
equal to zero. The 100 KHz sinusoid which is present in both channels of the
input signal is extracted in the final decomposition (IMF) of both components
as expected. The decomposition obtained from our hardware implementation,
therefore, follows the mode alignment property of BEMD [17], which is vital
for its use in data fusion applications [19].

The quantitative performance of the proposed implementation was estab-
lished in decomposing the above signal by computing the correlation between
the extracted IMF's and the original tones constituting the input. For the tones
of frequencies 2500 KHz, 1000 KHz and 100 KHz respectively, the correspond-
ing (normalised) correlation values are 0.99, 0.98, 0.99 (real part) and 0.98
(imaginary part), illustrating the high accuracy of the obtained decomposi-
tion.
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alignment which is a hallmark of BEMD decompositions.
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Fig. 6 Decomposition of a complex data of a position record of a subsurface oceanographic
Floatto (top row) into two IMFs (shown in the subsequent rows) via proposed FPGA based
BEMD. Note that the IMFs are composed of rotational components (shown in the right
column) in accordance with the rationale of the method. The real and imaginary components
of the data represent displacements (km) in eastern and northern directions.

5.2 Case Study 2: Decomposition of Real-world Float Data

The performance of the proposed architecture was validated on a real world
bivariate data of position records of a subsurface oceanographic float, which
tracked the currents of salty water flowing out from the Mediterranean Sea
during the Eastern Basin experiment [20]. The original bivariate data is shown
in the top row of Fig. 6 in 2D space (left) along with the plots of two individual
data channels (right). The decomposition of the bivariate data obtained from
our proposed system is also shown in Fig. 6, as plots of h; and hy (middle rows);



FPGA based implementation of BEMD 15

Heavy Sine Float data

=

Amplitude
=
7
Amplitude
=

5 I

'
=

Denoised Heavy Sine Denoised Float

()
U T

Amplitude
. .
Amplitude

0 1

250 250
Number of Samples Number of Samples

Fig. 7 Online signal denoising using BEMD: (Top row) Original signals (thick black line)
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noised signals using the proposed architecture.

the residue r is shown in the last row. It can be noticed that the proposed
system is able to extract the first two IMFs effectively with faster rotations
in the input being decomposed in h; and subsequent slower rotations being
extracted in hy and r. The plot of the residue r, however, shows that there are
still few oscillations left in the signal to be recovered, which can be obtained
by using additional IMF computing blocks. Note that, unlike in the case of
utilising a synthetic signal in the case study 1, true IMFs are not available here,
as a result of which a rigorous validation regarding the quality of extracted
IMFs is not possible.

5.3 Case Study 3: Online Bivariate Signal Denoising

Denoising refers to the process of removing unwanted noise from input data
and is considered as a preliminary step in many practical 1D and 2D (image)
signal processing applications. EMD, being a fully data driven method, has
been employed successfully in signal denoising problems [7]. The rationale
behind the EMD based denoising is the partial reconstruction of relevant EMD
components (modes) based on some suitable criteria. Based on that principle,
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Fig. 8 Error bars showing repeated simulation results obtained from applying the proposed
online and standard BEMD based denoising methods on input signal channels x(t) and y(t).

we employ the proposed architecture to demonstrate the potential of BEMD
in online bivariate signal denoising. It is, however, important to emphasize
that unlike existing standard EMD denoising algorithms which operate on a
single input, we present an online denoising application based on BEMD.

The input complex signal z(t) = x(t) 4+ wy(t) in our case was composed of
two channels: z(t) was a standard ‘Heavy sine’ data set whereas y(t) was a
segment of real world float data used in the previous section. The input data set
is shown in Fig. 7 (top row) in thick black lines along with their noisy version
(in lighter color), corresponding to the input signal to noise ratio (SNR) of
SN R=10dB. The input signal was denoised after removing the first two IMF's
obtained from the proposed architecture. The denoised signals are shown in
the bottom row of Fig. 7. Note that the output signal exhibits similarity with
the reference input signals.

We further tested this online denoising strategy on noisy z(¢) for the range
of values of input signal SNR = —5 dB to 10 dB. The experiments involved
K = 500 noisy realisations of the input test signals. Fig. 8 shows the plots, in
the form of error bars, of the output signal SNR for the two channels, cor-
responding to the whole range of input SINR. In addition to the results from
the proposed architecture, the figure also shows the error bars of denoised
signals obtained from standard BEMD algorithm [21]. Note that despite the
online nature of the proposed architecture, its performance can be considered
as comparable to the standard BEMD which employs computationally expen-
sive spline interpolation and also processes the whole input data as a single
input.

5.4 Resource Utilisation and Timing Results

Table 1 shows the device utilisation summary of the synthesized Verilog code
for KINTEX 7, XC7K480T FPGA. The table shows that a significant number
of slice look up tables (LUT) were utlised by this hardware implementation.
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Table 1 Device utilisation summary for prototype implementation of BEMD on Xilinx
KINTEX (Kintex 7, XCK480T FPGA)

Logic Utilisation Used Available  Total Utilisation
No. of Slice Registers 53524 597200 8%

No. of Slice LUTs 194718 298600 65%

No. of fully used LUT-FF pairs 12430 235812 5%

No. of bonded IOBs 130 380 34%

No. of BUFG/BUFGCTRLSs 2 32 6%

No. of DSP 48E1ls 180 1920 9%

Table 2 Timing Details of the proposed hardware architecture

Proposed design

Sampling Frequency / Clock Rate 25 MHz
Initial Delay for single iteration 1.6 us
Computational Delay for single iteration 0.2 us

Computation Time for IMF1 / 1000 samples 49.2 ps
Computation Time for IMF2 / 1000 samples 58.4 us
Computation Time for residue / 1000 samples  58.4 us
Overall Data Throughput 261.28 Mbps

From 65% utilised slice LUTS, only 1% are used as memory, while the remain-
ing 64% are used for logic development. Moreover, only 5% of LUT flipflops
(LUT-FF) pairs are utilised fully by the implemented hardware architecture,
whereas there are 77% LUT-FF pairs with unused flip flops and 17% with
unused LUT.

Table 2 presents the timing details of the proposed system. According to
the Table 2, the proposed system can process the bivariate signals with a
maximum clock rate of 25 MHz. There was an initial delay of 9.4 us between
the input signal and the first IMF h;, while a delay of 18.6 us was observed
between the second IMF hs, residue r and the input signal. The proposed
system exhibits a data throughput of 261.28 Mbps, as it required 58.4 us to
perform the complete decomposition of input signal into hq, ho, and r for 1000
data samples. The setup time (minimum amount of time the signal should be
held constant before the clock edge so that the data is reliably managed by
the clock) was observed to be 39.068 ns, while the clock-to-output delay (the
worst case time it takes for a signal to propagate out after the clock edge)
was found to be 0.687 ns for the proposed architecture. The minimum period
allowed was therefore 39.180 ns.

Moreover, the proposed system exhibits effective thermal resistance of 1.9
C/W, a junction temperature of 25.2 C and maximum Ambient of 84.8 C. The
Overall system consumes 122.16 mW of supply power.

Notice that a large chunk of resources in the proposed architecture are
utilised for implementing computationally expensive logic modules, including
extrema detection, computing multiple signal projections, and saw tooth inter-
polation to generate envelopes. On the other hand, owing to the online nature
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of the architecture, only a few resources are required for operations involving
memory, such as, for saving extrema locations and their values for saw tooth
interpolation process.

6 Discussion and Conclusions

Empirical mode decomposition and its multivariate extensions have recently
become very popular within signal processing, image processing and biomedi-
cal signal processing community. The BEMD, in particular, has found numer-
ous applications in biomedical engineering and signal processing applications,
which involve multiple data channels. For instance, BEMD has been success-
fully employed for the time-frequency analysis of EEG asymmetry [16], image
fusion [1] [17], fault diagnosis of rotating machinery [12], ECG pattern analysis
for emotion detection [2] and resolving non-stationary spectral information in
wind speed time series using the Hilbert-Huang transform [23].

We have proposed a parallel architecture for the real-time implementation
of bivariate empirical mode decomposition (BEMD) algorithm on FPGA. The
work is highly relevant since BEMD, which extends the EMD operation for
complex bivariate data, demands significantly higher computational resources
than those required for the standard EMD operation. Despite the growing
interest of BEMD in aforementioned applications, no real-time online hardware
implementation of the algorithm currently exists, thus, prohibiting its use in
real-time applications hard to materialize.

The key idea in our architecture is the parallel computation of multiple
complex envelopes that are averaged to find the local mean of input signal.
Furthermore, the computation of real-valued projections from complex signal
and subsequent local extrema detection process on those projections is also
optimised in our architecture. As a result, the architecture has been shown
to operate in real-time with significant speed, moreover, it supports sampling
frequency of up to 25 MHz. These results have been obtained for both synthetic
and real world bivariate signals and demonstrate the potential of the proposed
architecture for real-time computation of multichannel EMD.

In contrast to the original formulation of EMD algorithm and its multi-
variate extensions, which are offline or batch processing techniques, our work
focuses on an online hardware implementation of BEMD. Due to the online
and real-time nature of the proposed system, we faced several challenging de-
sign constraints, which led us to employ a saw tooth interpolation scheme [13]
in our architecture. The main reasons for using such an interpolation scheme
in our work are as follows:

1. Instead of batch processing, as with the off-line variant of EMD and BEMD,
where the whole chunk of input data is available for processing, the data
is sent to our system online and that data needs to be processed in real-
time. As a result, at a given time, we only use two extrema locations to
compute the local mean in this architecture. We have found that a simple
saw tooth interpolation is more effective in this scenario, yielding better
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Fig. 9 Sawtooth interpolation vs cubic spline interpolation for a signal involving small
number of extrema: Note that the local mean estimate from sawtooth interpolation is more
accurate as compared to that obtained from cubic spline interpolation. The main reason is
the tendency of cubic spline interpolation to introduce ‘end effects’ at the start and end of
a signal.

estimates of local mean as compared to spline interpolation. The local mean
estimation using both saw tooth and cubic spline interpolation schemes is
presented in Fig. 9, where two maxima points and two minima points are
used for interpolation. It can be seen that the saw tooth interpolation
works effectively in this scenario involving very few extrema points, and
that the saw tooth interpolation method yields very accurate local mean
estimates. One can also observe few artifacts due to end effects appearing
in the envelopes obtained from the spline interpolation, which were not
present in the case of saw tooth interpolation.

2. The proposed method, owing to its architecture, performs the EMD oper-
ation on small windows of input data, which is expected to aggravate the
problem of ‘end effects’ in the resulting decomposition as compared to orig-
inal formulations of EMD. Saw tooth interpolation is less prone to the ‘end
effects’ as compared to spline interpolation and is therefore more suitable
in our design. It is evident in Fig. 9, where the overshoot of the upper and
undershoot of lower envelopes computed from spline interpolation can be
seen at the start and end of input signal. However, the envelopes computed
from saw tooth interpolation are smooth and linear.

3. Cubic spline interpolation is computationally expensive; in fact, the com-
putation of a local mean via spline interpolation is by far the most compu-
tationally extensive task in EMD computation. Therefore, for the real-time
online implementation of EMD, employing a simple yet effective interpo-
lation scheme is more suitable.

It is important to note that the prime parameters of the proposed system,
i.e. number of iterations per IMF S, number of real-valued projections V' and
the value of initial delay d are set experimentally, depending upon the nature
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of input complex signal as well as the amount of resources available. To be
more specific, the value of S and d depends upon the nature of input signal,
i.e. the maximum interval between the subsequent extrema points should be
less than the value of d, while the number of projections V' determine the
accuracy of the decomposed IMFs. The greater the number of projections,
more accurate the decomposed IMFs will be, however, more resources will be
consumed. Therefore, V' = 8 seemed to be a suitable tradeoff between the
accuracy of decomposed IMFs and the amount of resources consumed. The
efficiency of proposed BEMD system cannot be guaranteed if it is implemented
on an FPGA with a different Configurable Logic Block (CLB) or DSP slice
architecture though it can be reconfigured on any FPGA belonging to 6 or 7
Series FPGA by Xilinx family. In addition, the system needs to be redesigned if
the type of interpolation scheme or division algorithm is altered. The proposed
architecture however caters for univariate or single channel data as a special
case when the imaginary component of the input complex signal is set to zero.
The proposed architecture aims to implement BEMD online in real-time,
if operated on small chunks (windows) of input data, thus aggravating the
so called ‘end-effect’ issue within the BEMD. While this problem is partially
addressed by employing sawtooth interpolation as the replacement of cubic
spline interpolation, a more permanent solution is still required. Future di-
rections of research include the development of mechanism to suppress end
effects from the BEMD decompositions and to extend the architecture for
general multivariate signals containing any number of input channels.
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