Skip to main content
Log in

A Low-Cost Tiny-Size Successive Approximation ADC for Applications Requiring Low-Resolution Conversion with Moderate Sampling Rate

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

The required silicon die area of successive approximation analog-to-digital converters (SA-ADCs) increases rapidly with ADC resolution. In particular, a main design challenge for SA-ADCs is the number of unit capacitors required for the internal charge distribution capacitive-array digital-to-analog converter (DAC), which increases exponentially with a monotonic increase in the number of the output bits. Therefore, the overall performance of the final design is affected by the huge die area and, in turn, the switching energy of the capacitive-array DAC. In this article, a tiny-size MOSFET-only SA-ADC topology is proposed for those applications which require a low-resolution and moderate to high sampling-rate analog-to-digital converters prior to digital processing units. To this end, the widely used metal–insulator–metal (MIM) capacitors of mixed-signal CMOS technologies are replaced with area-efficient MOS capacitors available in every technology. The effectiveness of this implementation is validated through successful simulation of a 5-bit 20 MS/s MOSFET-only SA-ADC in a low-cost 0.18-µm digital CMOS technology. The ADC consumes a total power of 76.88 µW from a 1.2-V voltage supply, while it occupies a die size of only 190 µm2. This area is roughly 40% lower than 310 µm2, the die area of an equivalent design based on MIM capacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. A.M. Abo, P.R. Gray, A 1.5-V, 10-bit, 14.3-MS/s CMOS pipeline analog-to-digital converter. IEEE J. Solid-State Circuits 34, 599–606 (1999)

    Article  Google Scholar 

  2. E. Alpman, H. Lakdawala, L.R. Carley, K. Soumyanath, A 1.1 V 50 mW 2.5 GS/s 7 b time-interleaved C-2C SAR ADC in 45 nm LP digital CMOS, in IEEE ISSCC Digest. Technical papers (2009), pp. 76–77

  3. H. Aminzadeh, MOSFET-only pipelined analogue-to-digital converters: non-linearity compensation by digital calibration. Int. J. Electron. 101, 158–173 (2014)

    Article  Google Scholar 

  4. H. Aminzadeh, MOSFET-only two-stage operational amplifiers with Miller compensation: design and fabrication in nano-scale CMOS. J. Circuits Syst. Comput. 22, 135006501–135006513 (2013)

    Article  Google Scholar 

  5. H. Aminzadeh, R. Lotfi, K. Mafinezhad, Design of low-power single-stage operational amplifiers based on an optimized settling model. Analog Integr. Circuits Signal Process. 58, 153–160 (2009)

    Article  Google Scholar 

  6. S.U. Ay, A sub-1 Volt 10-bit supply boosted SAR ADC design in standard CMOS. Analog Integr. Circuits Signal Process. 66, 213–221 (2011)

    Article  Google Scholar 

  7. T.C. Carusone, D.A. Johns, K.W. Martin, Analog Integrated Circuit Design (Wiley, Hoboken, 2011)

    Google Scholar 

  8. Y. Chang, C.S. Wang C.K. Wang, A 8-bit 500-KS/s low power SAR ADC for bio-medical applications, in IEEE ASSCC Digest. Technical papers (2007), pp. 228–231

  9. S.W.M. Chen, R.W. Brodersen, A 6-bit 600-MS/s 5.3-mW asynchronous ADC in 0.13-µm CMOS, in IEEE ISSCC Digest. Technical papers (2006), pp. 574–575

  10. L. Chen, A. Sanyal, J. Ma, N. Sun, A 24-uW 11-bit 1-MS/s SAR ADC with a bidirectional single-side switching technique, in IEEE European Solid-State Circuits Conference (2014), pp. 219–222

  11. R. Ding, H. Liang, S. Liu, A novel switching scheme and area-saving architecture for SAR ADC. Analog Integr. Circuits Signal Process. 91, 149–154 (2017)

    Article  Google Scholar 

  12. Z. Fazel, S. Saeedi, M. Atarodi, Pipelining method for low-power and high-speed SAR ADC design. Analog Integr. Circuits Signal Process. 87, 353–368 (2016)

    Article  Google Scholar 

  13. A.R. Ghasemi, M. Saberi, R. Lotfi, A low-power capacitor switching scheme with low common-mode voltage variation for successive approximation ADC. Microelectron. J. 61(12), 15–20 (2017)

    Article  Google Scholar 

  14. B.P. Ginsburg, A.P. Chandrakasan, Dual time-interleaved successive approximation register ADCs for an ultra-wideband receiver. IEEE J. Solid-State Circuits 42, 247–257 (2007)

    Article  Google Scholar 

  15. H.C. Hong, G.M. Lee, A 65-fJ/conversion-step 0.9-V 200 kS/s rail-to-rail 8-bit successive-approximation ADC. IEEE J. Solid-State Circuits 42, 2161–2168 (2007)

    Article  Google Scholar 

  16. C.C. Liu, S.J. Chang, G.Y. Huang, Y.Z. Lin, A 10-bit 50-MS/s SAR ADC with a monotonic capacitor switching procedure. IEEE J. Solid-State Circuits 45, 731–740 (2010)

    Article  Google Scholar 

  17. F. Maloberti, Data Converters (Springer, New York, 2007)

    Google Scholar 

  18. R. Ozgun, J. Lin, F. Tejada, P. Pouliquen, A.G. Andreou, A low-power 8-bit SAR ADC for a QCIF image sensor, in IEEE International Symposium on Circuits and Systems (2011), pp. 841–844

  19. B. Razavi, Design of Analog CMOS Integrated Circuits (McGraw-Hill, New York City, 2001)

    Google Scholar 

  20. T. Tille, J. Sauerbrey, M. Mauthe, D. Schmitt-landsiedel, Design of low-voltage MOSFET only sigma-delta modulators in standard digital CMOS technology. IEEE Trans. Circuits Syst. I Regul. Pap. 51, 96–109 (2004)

    Article  MATH  Google Scholar 

  21. T. Tille, J. Sauerbrey, D. Schmitt-Landsiedel, A 1.8-V MOSFET-only Σ∆ modulator using substrate biased depletion-mode MOS capacitors in series compensation. IEEE J. Solid-State Circuits 36, 1041–1047 (2001)

    Article  Google Scholar 

  22. X.Y. Tong, Z.M. Zhu, Y.T. Yang, L.X. Liu, D/A conversion networks for high-resolution SAR A/D converters. Electron. Lett. 47, 169–171 (2011)

    Article  Google Scholar 

  23. X. Wang, H. Huang, Q. Li, Design considerations of ultralow-voltage self-calibrated SAR ADC. IEEE Trans. Circuits Syst. II Express Briefs 62, 337–341 (2015)

    Article  Google Scholar 

  24. A. Wu, J. Wu, J. Huang, Energy-efficient switching scheme for ultra-low voltage SAR ADC. Analog Integr. Circuits Signal Process. 90, 507–511 (2017)

    Article  Google Scholar 

  25. L. Xie, G. Wen, J. Liu, Y. Wang, Energy-efficient hybrid capacitor switching scheme for SAR ADC. Electron. Lett. 50, 22–23 (2014)

    Article  Google Scholar 

  26. H. Yoshizawa, Y. Huang, P.F. Ferguson, G.C. Temes, MOSFET-only switched-capacitor circuits in digital CMOS technology. IEEE J. Solid-State Circuits 34, 734–747 (1999)

    Article  Google Scholar 

  27. C. Yuan, Y. Lam, Low-energy and area-efficient tri-level switching scheme for SAR ADC. Electron. Lett. 48, 482–483 (2012)

    Article  Google Scholar 

  28. M. Zamprogno, A. Minuti, F. Girardi, P. Confalonieri, G. Nicollini, A 10-b 100-kS/s 1-mW general-purpose ADC for cellular telephones. IEEE Trans. Circuits Syst. II Express Briefs 59, 138–142 (2012)

    Article  Google Scholar 

  29. J. Zhang, R. Ding, Z. Zhu, 99.2% energy saving and high-linearity switching method for SAR ADCs. Analog Integr. Circuits Signal Process. 91, 93–96 (2017)

    Article  Google Scholar 

  30. Y. Zhu, C.H. Chan, U.F. Chio, S.W. Sin, U. Seng-Pan, R.P. Martins, F. Maloberti, A 10-bit 100-MS/s reference-free SAR ADC in 90 nm CMOS. IEEE J. Solid-State Circuits 45, 1111–1121 (2010)

    Article  Google Scholar 

  31. Z. Zhu, Y. Xiao, X. Song, VCM-based monotonic capacitor switching scheme for SAR ADC. Electron. Lett. 49, 327–329 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamed Aminzadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aminzadeh, H. A Low-Cost Tiny-Size Successive Approximation ADC for Applications Requiring Low-Resolution Conversion with Moderate Sampling Rate. Circuits Syst Signal Process 38, 242–258 (2019). https://doi.org/10.1007/s00034-018-0854-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-018-0854-0

Keywords

Navigation