Skip to main content
Log in

Robust Adaptive Wideband Beamforming Against Direction and Sensor Location Errors

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

The performance of the existing robust beamformers can be still degraded by the bias between the nominal steering vector and the actual one. In this paper, a novel robust wideband beamformer based on the time–frequency distributions is proposed, which can estimate the steering vector accurately even in the presence of direction and sensor location errors. Firstly, it develops an approach for wideband signals to select the single-source auto-source time–frequency (TF) points of the source signals. Then these TF points are utilized to obtain the steering vectors without using the perturbed array manifold and direction information. Finally, a higher output signal-to-interference-plus-noise ratio (SINR) is achieved for the minor bias between the estimated steering vectors and the actual ones. Simulation results demonstrate that the proposed algorithm outperforms other conventional robust beamforming approaches and can achieve high output SINR close to the ideal beamformer over a broad range of direction and sensor location errors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. A. Aïssa-El-Bey, N. Linh-Trung, K. Abed-Meraim, A. Belouchrani, Y. Grenier, Underdetermined blind separation of non-disjoint sources in the time-frequency domain. IEEE Trans. Signal Process. 55(3), 897–907 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. A. Aïssa-El-Bey, K. Abed-Meraim, Y. Grenier, Blind separation of underdetermined convolutive mixtures using their time–frequency representation. IEEE Trans. Signal Process. 15(5), 1540–1550 (2007)

    MATH  Google Scholar 

  3. Y. Bucris, I. Cohen, M.A. Doron, Bayesian focusing for coherent wideband beamforming. IEEE Trans. Audio Speech Lang. Process. 20(4), 1282–1296 (2012)

    Article  Google Scholar 

  4. K.M. Buckley, L.J. Griffith, An adaptive generalized sidelobe canceller with derivative constraints. IEEE Trans. Antennas Propag. 34(3), 311–319 (1986)

    Article  Google Scholar 

  5. A. Belouchrani, M.G. Amin, Blind source separation based on time-frequency signal representations. IEEE Trans. Signal Process. 46(11), 2888–2897 (1998)

    Article  Google Scholar 

  6. B.D. Carlson, Covariance matrix estimation errors and diagonal loading in adaptive arrays. IEEE Trans. Aerosp. Electron. Syst. 24, 397–401 (1988)

    Article  Google Scholar 

  7. M.H. Er, A. Cantoni, Derivative constraints for broad-band element space antenna array processors. IEEE Trans. Acoust. Speech Signal Process. 31(6), 1378–1393 (1983)

    Article  Google Scholar 

  8. R. Ebrahimi, S.R. Seydnejad, Elimination of pre-steering delays in space–time broadband beamforming using frequency domain constrains. IEEE Commun. Lett. 17(4), 769–772 (2013)

    Article  Google Scholar 

  9. O.L. Frost, An algorithm for linearly constrained adaptive array processing. Proc. IEEE 60(8), 926–935 (1972)

    Article  Google Scholar 

  10. K.C. Huarng, C.C. Yeh, Performance analysis of derivative constraint adaptive arrays with pointing errors. IEEE Trans. Antennas Propag. 40, 975–981 (1992)

    Article  Google Scholar 

  11. P. Hu, M.W. Shen, C. Liang, D. Wu, D.Y. Zhu, An efficient broadband beamforming algorithm based on frequency-space cascade processing. Circuits Syst. Signal Process. 37, 432–443 (2018)

    Article  MathSciNet  Google Scholar 

  12. W. Liu, R.J. Langley, An adaptive wideband beamforming structure with combined subband decomposition. IEEE Trans. Antennas Propag. 57(7), 2204–2207 (2009)

    Article  Google Scholar 

  13. N. Lin, W. Liu, R.J. Langley, Performance analysis of an adaptive broadband beamformer based on a two-element linear array with sensor delay-line processing. Signal Process. 90, 269–281 (2010)

    Article  MATH  Google Scholar 

  14. W. Liu, S. Weiss, Wideband Beamforming: Concepts and Techniques (Wiley, Chichester, 2010)

    Book  Google Scholar 

  15. N. Linh-Trung, A. Belouchrani, K. Abed-Meraim, B. Boashash, Separating more sources than sensors using time-frequency distributions. EURASIP J. Appl. Signal Process. 17, 2828–2847 (2005)

    MATH  Google Scholar 

  16. Y.H. Luo, W.W. Wang, J.A. Chambers, S. Lambotharan, I. Proudler, Exploitation of source nonstationarity in underdetermined blind source separation with advanced clustering techniques. IEEE Trans. Signal Process. 54(6), 2198–2212 (2006)

    Article  MATH  Google Scholar 

  17. D.Z. Peng, Y. Xiang, Underdetermined blind source separation based on relaxed sparsity condition of sources. IEEE Trans. Signal Process. 57(2), 809–814 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. V.G. Reju, S.N. Koh, I.Y. Soon, Underdetermined convolutive blind source separation via time–frequency masking. IEEE Trans. Audio Speech Lang. Process. 18(1), 101–116 (2010)

    Article  Google Scholar 

  19. I. Thng, A. Cantoni, Y.H. Leung, Constraints for maximally flat optimum broadband antenna arrays. IEEE Trans. Signal Process. 43(6), 1334–1347 (1995)

    Article  Google Scholar 

  20. Z. Tian, K.L. Bell, H.L.V. Trees, A recursive least squares implementation for LCMP beamforming under quadratic constraint. IEEE Trans. Signal Process. 49, 1138–1145 (2001)

    Article  Google Scholar 

  21. E.W. Vook, R.T. Compton, Bandwidth performance of linear adaptive arrays with tapped delay-line processing. IEEE Trans. Aerosp. Electron. Syst. 28(3), 901–908 (1992)

    Article  Google Scholar 

  22. M. Zhang, M.H. Er, Robust adaptive beamforming for broadband arrays. Circuits Syt Signal Process. 16(2), 207–216 (1997)

    Article  MATH  Google Scholar 

  23. S. Zhang, I. Thng, Robust presteering derivative constraints for broadband antenna arrays. IEEE Trans. Signal Process. 50, 1–10 (2002)

    Article  Google Scholar 

  24. Y. Zhao, W. Liu, R.J. Langley, Adaptive wideband beamforming with frequency invariance constraints. IEEE Trans. Antennas Propag. 59(4), 1175–1184 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Y. Zhao, W. Liu, Robust wideband beamforming with frequency response variation constraint subject to arbitrary norm-bounded error. IEEE Trans. Antennas Propag. 60(5), 2566–2571 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

Funding was provided by National Natural Science Foundation of China (Grant No. 61401469).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaqi Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Liu, C., Zhao, Y. et al. Robust Adaptive Wideband Beamforming Against Direction and Sensor Location Errors. Circuits Syst Signal Process 38, 664–681 (2019). https://doi.org/10.1007/s00034-018-0875-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-018-0875-8

Keywords

Navigation