Skip to main content
Log in

Analysis of Systolic Penalties and Design of Efficient Digit-Level Systolic-like Multiplier for Binary Extension Fields

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Systolic designs are considered as suitable candidate for high-speed VLSI realization for their inherent advantages of simplicity, regularity, modularity, and local interconnections. During the past few decades several systolic designs of finite field multipliers have been proposed in the literature. They are popularly used to achieve very high-throughput rate without any centralized control. But, all these designs incorporate heavy systolic penalties in terms of register complexity and latency of computation. We have analyzed here the hidden systolic penalties in those multipliers and proposed a digit-level systolic-like structure and a super-systolic-like structure for finite field multiplication. We have shown that the key issues to obtain such designs are the choice of design layout and digit size which substantially affect the register complexity, critical path, and latency. We have determined the optimal digit size and design layout to reduce the systolic penalties and at the same time to achieve lower critical path, higher-throughput rate, and lower latency with less register complexity with lower overall area complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. T. Beth, D. Gollmann, Algorithm engineering for public key algorithms. IEEE J. Sel. Areas Commun. 7(4), 458–465 (1989)

    Article  Google Scholar 

  2. J.H. Guo, C.L. Wang, Digit-serial systolic multiplier for finite fields \(GF(2^m)\). IEE Proc. Comput. Digital Tech. 145(2), 143–148 (1998)

    Article  Google Scholar 

  3. D. Hankerson, A. Menezes, S. Vanstone, Guide to Elliptic Curve Cryptography (Springer, Berlin, Heidelberg, 2003)

    MATH  Google Scholar 

  4. A. Hariri, A.R. Masoleh, Digit-level semi-systolic and systolic structures for the shifted polynomial basis multiplication over binary extension fields. IEEE Trans. Very Large Scale Integr. Syst. (VLSI) 19(11), 2125–2129 (2011)

    Article  Google Scholar 

  5. F.R. Henriguez, C.K. Koc, Parallel multipliers based on special irreducible pentanomials. IEEE Trans. Comput. 52(12), 1535–1542 (2003)

    Article  MATH  Google Scholar 

  6. I.S. Hsu, T.K. Truong, L.J. Deutsch, I.S. Reed, A comparison of VLSI architecture of finite field multipliers using dual, normal, or Standard bases. IEEE Trans. Comput. 37(6), 735–739 (1988)

    Article  Google Scholar 

  7. J.L. Imana, J.M. Sanchez, F. Tirado, Bit-parallel finite field multipliers for irreducible trinomials. IEEE Trans. Computers. 55(5), 520–533 (2006)

    Article  Google Scholar 

  8. S.K. Jain, L. Song, K.K. Parhi, Efficient semisystolic architectures for finite-field arithmetic. IEEE Trans. Very Large Scale Integr. Syst. (VLSI) 6(1), 101–113 (1998)

    Article  Google Scholar 

  9. C.H. Kim, C.P. Hong, S. Kwon, A digit-serial multiplier for finite field \(GF(2^m)\). IEEE Trans. Very Large Scale Integr. Syst. (VLSI) 13(4), 476–483 (2005)

    Article  Google Scholar 

  10. C.Y. Lee, Low complexity bit-parallel systolic multiplier over \(GF(2^m)\) using irreducible trinomials. IEE Proc. Comput. Digit. Tech. 150(1), 39–42 (2003)

    Article  Google Scholar 

  11. C.Y. Lee, J.S. Horng, I.C. Jou, E.H. Lu, Low complexity bit parallel systolic Montgomery multipliers for special class of \(GF(2^m)\). IEEE Trans. Comput. 54(9), 1061–1070 (2005)

    Article  Google Scholar 

  12. R. Lidl, H. Niederreiter, Introduction to Finite Fields and their Applications (Cambridge University Press, Cambridge, 1986)

    MATH  Google Scholar 

  13. J. Lopez, R. Dahab, An Overview of Elliptic Curve Cryptography. Technical Report IC-00-10, State University of Campinas, Brazil (2000)

  14. A.R. Masoleh, M.A. Hasan, Low complexity bit parallel architectures for polynomial basis multiplication over \(GF(2^m)\). IEEE Trans. Comput. 53(8), 945–959 (2004)

    Article  Google Scholar 

  15. P.K. Meher, Systolic and super-systolic multipliers for finite field \({GF(2^m)}\) based on irreducible trinomials. IEEE Trans. Circuits Syst. I Regul. Pap. 55(4), 1031–1040 (2008)

    Article  MathSciNet  Google Scholar 

  16. B.K. Meher, P.K. Meher, An efficient look-up table-based approach for multiplication over \(GF(2^m)\) generated by trinomials. Circuits Signals Signal Process. 32, 2623–2638 (2013)

    Article  Google Scholar 

  17. National Institute of Standards and Technology (NIST). http://www.csrc.nist.gov/publications

  18. P.A. Scott, S.E. Tavares, L.E. Peppard, A Fast VLSI multiplier for \(GF(2^m)\). IEEE J. Sel. Areas Commun. 4(1), 62–66 (1986)

    Article  Google Scholar 

  19. L. Song, K.K. Parhi, Low-energy digit-serial/parallel finite field multipliers. J. VLSI SDignal Process. Syst. Signal Image Video Technol. 19, 149–166 (1998)

    Article  Google Scholar 

  20. W. Tang, H. Wu, M. Ahmadi, VLSI implementation of bit-parallel word-serial multiplier in \(GF(2^{233})\), in Third International IEEE-NEWCAS Conference, 399–402 (2005)

  21. C.L. Wang, J.L. Lin, Systolic array implementation of multipliers for finite fields \(GF(2^m)\). IEEE Trans. Circuits Syst. 38(7), 796–800 (1991)

    Article  Google Scholar 

  22. H. Wu, Low complexity bit-parallel multiplier for a class of finite fields, in Proceedings of International Conference on Communications, Circuits and Systems, vol. 4, pp. 565–568 (2006)

  23. J. Xie, P.K. Meher, Z. Mao, High-throughput digit-level systolic multiplier over \(GF(2^m)\) based on irreducible trinomials. IEEE Trans. Circuits Syst. II Exp. Briefs 62(5), 481–485 (2015)

    Article  Google Scholar 

  24. C.S. Yeh, I.S. Reed, T.K. Truong, Systolic multipliers for finite fields \(GF(2^m)\). IEEE Trans. Comput. C–33(4), 357–360 (1984)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bimal K. Meher.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meher, B.K., Meher, P.K. Analysis of Systolic Penalties and Design of Efficient Digit-Level Systolic-like Multiplier for Binary Extension Fields. Circuits Syst Signal Process 38, 774–790 (2019). https://doi.org/10.1007/s00034-018-0884-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-018-0884-7

Keywords

Navigation