Skip to main content
Log in

Realization of Second-Order Structure of Recursive Algorithm for Discrete Cosine Transform

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

A computational and hardware-efficient second-order infinite impulse response filter structure is proposed in this paper. It can compute discrete cosine transform (DCT) with improved processing speed and is valid for N = 2r, where N is the length of the input sequence and r > 1. A new algorithm is also proposed in this paper which is an improvement over previously reported algorithms in the literature. The proposed algorithm reduces the total number of real multiplications and additions in comparison with the existing algorithms. Using the suggested algorithm, computational cycles required to compute a DCT coefficient are less which further reduces the truncation error while processing a long length of input data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. S. An, C. Wang, Recursive algorithm, architectures and FPGA implementation of the two-dimensional discrete cosine transform. IET Image Process. 2(6), 286–294 (2008)

    Article  MathSciNet  Google Scholar 

  2. V. Britanak, The fast DCT-IV/DST-IV computation via the MDCT. Signal Process. 83(8), 1803–1813 (2003)

    Article  MATH  Google Scholar 

  3. J. Canaris, A VLSI architecture for the real-time computation of discrete trigonometric transforms. J. VLSI Signal Process. Syst. Signal Image Video Technol. 5(1), 95–104 (1993)

    Article  MATH  Google Scholar 

  4. Y.H. Chan, L.P. Chau, W.C. Siu, Efficient implementation of discrete cosine transform using recursive filter structure. IEEE Trans. Circuits Syst. Video Technol. 4(6), 550–552 (1994)

    Article  Google Scholar 

  5. C.H. Chen, B.D. Liu, J.F. Yang, J.L. Wang, Efficient recursive structures for forward and inverse discrete cosine transform. IEEE Trans. Signal Process. 52(9), 2665–2669 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. C. Cheng, K.K. Parhi, A novel systolic array structure for DCT. IEEE Trans. Circuits Syst. II Express Briefs 52(7), 366–369 (2005)

    Article  Google Scholar 

  7. D.F. Chiper, An efficient algorithm for a memory-based systolic array VLSI implementation of type IV DCT, in International Symposium Signals, Circuits and Systems (2015), pp. 1–4

  8. D.F. Chiper, M.N.S. Swamy, M.O. Ahmad, Systolic algorithms and a memory-based design approach for a unified architecture for the computation of DCT/DST/IDCT/IDST. IEEE Trans. Circuits Syst. I Regul. Pap. 52(6), 1125–1137 (2005)

    Article  Google Scholar 

  9. D.F. Coelho, R.J. Cintra, V.S. Dimitrov, Efficient computation of the 8-point DCT via summation by parts. J. Signal Process. Syst. 90(4), 1–10 (2018)

    Google Scholar 

  10. A.K. Jain, A sinusoidal family of unitary transforms. IEEE Trans. Pattern Anal. Mach. Intell. 4, 356–365 (1979)

    Article  MATH  Google Scholar 

  11. V.I. Kober, A.V. Vokhmintcev, A.V. Melnikov, Recursive calculation of discrete cosine transform for low-resolution signal processing. Dokl. Math. 91(2), 167–170 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. C.W. Kok, Fast algorithm for computing discrete cosine transform. IEEE Trans. Signal Process. 45(3), 757–760 (1997)

    Article  Google Scholar 

  13. S.F. Lei, L.A. Shin-Chi, W.C. Tseng, Recursive type-IV discrete cosine transform system. U.S. Patent 9,026,573 (2015)

  14. J.B. Lima, Fast algorithm for computing cosine number transform. Electron. Lett. 51(20), 1570–1572 (2015)

    Article  Google Scholar 

  15. H. Malvar, Fast computation of discrete cosine transform through fast Hartley transform. Electron. Lett. 22(7), 352–353 (1986)

    Article  Google Scholar 

  16. I. Mamatha, J.N. Raj, S. Tripathi, T.S.B. Sudarshan, Reduced complexity architecture for convolution based discrete cosine transform, in IEEE International Symposium Electronic System Design (ISED) (2013), pp. 67–71

  17. P.K. Meher, Systolic designs for DCT using a low-complexity concurrent convolutional formulation. IEEE Trans. Circuits Syst. Video Technol. 16(9), 1041–1050 (2006)

    Article  Google Scholar 

  18. P.K. Meher, J.C. Patra, A new convolutional formulation of discrete cosine transform for systolic implementation, in IEEE International Conference on Information, Communications and Signal Processing (2007), pp. 1–4

  19. M.N. Murthy, Radix-2 algorithms for implementation of type-II discrete cosine transform and discrete sine transform. Int. J. Eng. Res. Appl. 3(3), 602–608 (2013)

    Google Scholar 

  20. M.N. Murthy, Recursive algorithms and systolic architectures for realization of type-II discrete cosine transform and inverse discrete cosine transform. Int. J. Eng. Res. Appl. 4, 24–32 (2014)

    Google Scholar 

  21. M. Puschel, Cooley–Tukey FFT like algorithms for the DCT, in IEEE International Conference Acoustics, Speech, and Signal Processing (2003), pp. 501–504

  22. M. Puschel, J.M. Moura, Algebraic signal processing theory: Cooley–Tukey type algorithms for DCTs and DSTs. IEEE Trans. Signal Process. 56(4), 1502–1521 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Y. Reznik, R.K. Chivukula, Fast algorithms for computation of 5-point DCT-II, DCT-IV, and DST-IV, and architectures. United States patent US 8,631,060. 2014, (2014)

  24. X. Shao, S.G. Johnson, Type-II/III DCT/DST algorithms with a reduced number of arithmetic operations. Signal Process. 88(6), 1553–1564 (2008)

    Article  MATH  Google Scholar 

  25. J.L. Wang, C.B. Wu, B.D. Liu, J.F. Yang, Implementation of the discrete cosine transform and its inverse by recursive structures, in IEEE Workshop on Signal Processing Systems (1999), pp. 120–130

  26. Z. Wang, G.A. Jullien, W.C. Miller, Implementation of the discrete cosine transform and its inverse by digital filtering, in Proceedings of the 37th Midwest Symposium on Circuits and Systems 1994, vol. 23 (1994), pp. 821–824

  27. J.F. Yang, C.P. Fan, Compact recursive structures for discrete cosine transform. IEEE Trans. Circuits Syst. II Analog Digit. Signal Process. 47(4), 314–321 (2000)

    Article  MATH  Google Scholar 

  28. R.X. Yin, W.C. Siu, A new fast algorithm for computing prime-length DCT through cyclic convolutions. Signal Process. 81(5), 895–906 (2001)

    Article  MATH  Google Scholar 

  29. W. Yuan, P. Hao, C. Xu, Matrix factorization for fast DCT algorithms. IEEE Int. Conf. Acoust. Speech Signal Process. 3, 948–951 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pragati Dahiya.

Additional information

The authors wish to acknowledge research fellowship from University Grants of Commission, Government of India.

Appendix

Appendix

Computation of DCT coefficients for an input sequence x(n) using MATLAB 8.3 version.

Given a sequence of N = 8 samples

$$ x\left( n \right) = \left[ {10 9 8 4 6 7 9 5} \right],\quad n = 0, 1, 2, \ldots ,7 $$
(A1)

Computation of X(k) using Eq. (1a)

$$ \begin{aligned}&X\left( k \right) = \left[ { 20.5061\;\;2.5347\;\;2.8837\;\;2.1439\;\; - 2.8284\;\;0.6550\;\; - 0.4291\;\;1.8842} \right],\\ &\qquad k = 0, 1, 2, \ldots ,7\end{aligned} $$
(A2)

From Eq. (11b), we get:

$$ w_{0} \left( n \right) = \left[ { 5 0 1 - 2} \right],\quad n = 0,1,2,3 $$
(A3)
$$ w_{1} \left( n \right) = \left[ {5 3} \right],\quad n = 0, 1 $$
(A4)
$$ w_{2} \left( n \right) = \left[ { - 8} \right],\quad n = 0 $$
(A5)
$$ x^{3} \left( 0 \right) = \left[ {58} \right] $$
(A6)

Using Eq. (17) to obtain \( G_{ji}^{p} \left( k \right) \)

$$ G_{3i}^{p} \left( k \right) = \left[ {5.0693 4.2877 1.3100 3.7685} \right],\quad i = 0, 1, 2, 3 $$
(A7)
$$ G_{1i}^{p} \left( k \right) = \left[ {5.7674 - 0.8582} \right],\quad i = 0, 1, 2 $$
(A8)
$$ G_{0i}^{p} \left( k \right) = \left[ { - 5.6569 } \right],\quad i = 0 $$
(A9)

By multiplying the above sequence \( G_{ji}^{p} \left( k \right) \) and Eq. (A6) by constant \( \sqrt {\frac{2}{N} } A_{k} \), we get X(k):

$$ X\left( k \right) = \left[ { 20.5061 2.5347 2.8837 2.1439 - 2.8284 0.6550 - 0.4291 1.8842} \right], \quad k = 0, 1, 2, \ldots ,7 $$
(A10)

It can be seen from Eq. (A10), and we obtained the DCT coefficients as given in (A2).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dahiya, P., Jain, P. Realization of Second-Order Structure of Recursive Algorithm for Discrete Cosine Transform. Circuits Syst Signal Process 38, 791–804 (2019). https://doi.org/10.1007/s00034-018-0885-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-018-0885-6

Keywords

Navigation