Skip to main content
Log in

Robust Waveform Optimization for MIMO-OFDM-Based STAP in the Presence of Environmental Uncertainty

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

The issue of robust orthogonal frequency division multiplexing (OFDM) multi-input multi-output (MIMO) radar waveform optimization is considered here with clutter uncertainty to enhance the worst-case detection probability of the MIMO-OFDM radar-based space–time adaptive processing (STAP). Robust optimization is necessary on account of the fact that waveform design is generally sensitive to the initial parameter estimation errors. According to the max–min approach, the issue of robust waveform design is constructed with the criterion of maximizing the worst-case output SINR, namely signal-to-interference-noise ratio, under the constraints of the clutter covariance matrix (CCM) errors and constant modulus to ease this sensitivity systematically, and hence the robustness of STAP’s detection to the uncertainty in the CCM estimate can be enhanced. To handle the acquired nonlinear and sophisticated issue, an iterative approach based on diagonal loading (DL) is presented, in which the inner and outer optimization issues can be recast into semidefinite programming ones by employing DL method, and thus both of them can be tackled in an efficient way. As compared to uncorrelated waveforms and the non-robust algorithm, numerical simulations reveal that the developed approach can enhance the robustness of STAP’s detection to the uncertainty in the CCM considerably.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. D. W. Bliss, K. W. Forsythe, Multiple-input multiple-output (MIMO) radar and imaging: degrees of freedom and resolution. in Proceedings 37th IEEE asilomar conference signals, systems, computers (2003)

  2. S. Boyd, L. Vandenberghe, Convex Optimization (Cambridge University Press, Cambridge, 2004)

    Book  MATH  Google Scholar 

  3. B.D. Carlson, Covariance matrix estimation errors and diagonal loading in adaptive arrays. IEEE Trans. Aerosp. Electron. Syst. 24, 397–401 (1998)

    Article  Google Scholar 

  4. F.K.W. Chan, H.C. So, L. Huang, L.T. Huang, Parameter estimation and identifiability in bistatic multiple-input multiple-output radar. IEEE Trans. Aerosp. Electron. Syst. 51, 2047–2056 (2015)

    Article  Google Scholar 

  5. C.Y. Chen, P.P. Vaidyanathan, MIMO radar space-time adaptive processing using prolate spheroidal wave functions. IEEE Trans. Signal Process. 56, 623–635 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. C.Y. Chen, P.P. Vaidyanathan, MIMO radar waveform optimization with prior information of the extended target and clutter. IEEE Trans. Signal Process. 57, 3533–3544 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. G. Cui, H. Li, M. Rangaswamy, MIMO radar waveform design with constant modulus and similarity constraints. IEEE Trans. Signal Process. 62, 343–353 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Y.C. Eldar, A. Ben-Tal, A. Nemirovski, Robust mean-squared error estimation in the presence of model uncertainties. IEEE Trans. Signal Process. 53, 168–181 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. M. Grant, S. Boyd, CVX: matlab software for disciplined convex programming 2013, http://www.cvxr.com/cvx. Accessed August 2013

  10. A.M. Haimovich, R.S. Blum, L.J. Cimini, MIMO radar with widely separated antennas. IEEE Signal Process. Mag. 25, 116–129 (2008)

    Article  Google Scholar 

  11. K. Harmanci, J. Tabrikian, J. Krolik, Relationships between adaptive minimum variance beamforming and optimal source localization. IEEE Trans. Signal Process. 48, 1–12 (2000)

    Article  Google Scholar 

  12. H. He, P. Stoica, J. Li, Wideband MIMO systems: signal design for transmit beampattern synthesis. IEEE Trans. Signal Process. 59, 618–628 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. R.A. Horn, C.R. Johnson, Matrix Analysis (Cambridge University Press, Cambridge, 1985)

    Book  MATH  Google Scholar 

  14. S. Imani, S. Ghorashi, Sequential quasi-convex-based algorithm for waveform design in colocated multiple-input multiple-output radars. IET Signal Proc. 10, 309–317 (2016)

    Article  Google Scholar 

  15. X. Jiang, W.J. Zeng, A. Yasotharan, H.C. So, Robust beamforming by linear programming. IEEE Trans. Signal Process. 62, 1834–1849 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. R. Klemn, Principles of space-time adaptive processing (IEE Press, London, 2002)

    Google Scholar 

  17. J. Li, L. Xu, P. Stoica, K.W. Forsythe, D.W. Bliss, Range compression and waveform optimization for mimo radar: a Cramér–Rao bound based study. IEEE Trans. Signal Process. 56, 218–232 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. J. Liu, H. Li, B. Himed, Joint optimization of transmit and receive beamforming in active arrays. IEEE Trans. on Signal Process. Lett. 21, 39–42 (2014)

    Article  Google Scholar 

  19. S. Sen, OFDM radar space-time adaptive processing by exploiting spatio-temporal sparsity. IEEE Trans. Signal Process. 61, 118–130 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. S. Sen, A. Nehorai, OFDM MIMO radar with mutual-information waveform design for low-grazing angle tracking. IEEE Trans. Signal Process. 58, 3152–3162 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. S. Sen, A. Nehorai, Target detection in clutter using adaptive OFDM radar. IEEE Signal Process. Lett. 16, 592–595 (2009)

    Article  Google Scholar 

  22. P. Stoica, J. Li, X. Zhu, Waveform synthesis for diversity-based transmit beampattern design. IEEE Trans. Signal Process. 56, 2593–2598 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. B. Tang, M.M. Naghsh, J. Tang, Relative entropy-based waveform design for MIMO radar detection in the presence of clutter and interference. IEEE Trans. Signal Process. 63, 3783–3796 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. H. Wang, G. Liao, J. Li, H. Lv, Waveform optimization for MIMO-STAP to improve the detection performance. Signal Process. 91, 2690–2696 (2011)

    Article  MATH  Google Scholar 

  25. H. Wang, G. Liao, Y. Wang, X. Liu, On parameter identifiability of mimo radar with waveform diversity. Sig. Process. 91, 2057–2063 (2011)

    Article  MATH  Google Scholar 

  26. Z. Yu, Z. Gu, W. Ser, M. H. Er, Convex optimization and its applications in robust adaptive beamforming. in Proc 9th international conference on information, communications and signal processing (ICICS), Taiwan (2013)

Download references

Acknowledgements

This work is partially supported by the National Natural Science Foundation of China under Grant 61301258 and China Postdoctoral Science Foundation Funded Project under Grant No. 2016M590218.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongyan Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H. Robust Waveform Optimization for MIMO-OFDM-Based STAP in the Presence of Environmental Uncertainty. Circuits Syst Signal Process 38, 1301–1317 (2019). https://doi.org/10.1007/s00034-018-0916-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-018-0916-3

Keywords

Navigation