Skip to main content
Log in

Robust Nonlinear Adaptive Filter Based on Kernel Risk-Sensitive Loss for Bilinear Forms

  • Short Paper
  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, a robust adaptive filter based on kernel risk-sensitive loss for bilinear forms is proposed. The proposed algorithm, called minimum kernel risk-sensitive loss bilinear form (MKRSL-BF), is derived by minimizing the cost function based on the minimum kernel risk-sensitive loss (MKRSL) criterion. The proposed algorithm can obtain the excellent performance when the system is corrupted by the impulsive noise. In addition, to further improve the performance of the MKRSL-BF algorithm, the novel algorithm based on the convex scheme is proposed, which can suppress the confliction between the fast convergence rate and the low steady-state error. Finally, simulations are carried out to verify the advantages of the proposed algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. For any matrices \( \left\{ {{\mathbf{A}},{\mathbf{B}},{\mathbf{C}}} \right\} \) of compatible dimensions, the Kronecker product has the properties

    \( {\text{vec}}\left( {{\mathbf{ABC}}} \right) = \left( {{\mathbf{B}}^{T} \otimes {\mathbf{A}}} \right){\text{vec}}\left( {\mathbf{C}} \right) \),

    \( {\text{tr}}\left( {{\mathbf{BA}}} \right) = {\text{tr}}\left( {{\mathbf{AB}}} \right) = \left( {{\text{vec(}}{\mathbf{A}}^{T} )} \right)^{T} {\text{vec(}}{\mathbf{B}} )n \).

References

  1. J. Arenas-Garcia, A.R. Figueiras-Vidal, A.H. Sayed, Mean-square performance of a convex combination of two adaptive filters. IEEE Trans. Signal Process. 54(3), 1078–1090 (2006)

    Article  MATH  Google Scholar 

  2. J. Arenas-Garcia, M. Martinez-Ramon, A. Navia-Vazquez, A.R. Figueiras-Vidal, Plant identification via adaptive combination of transversal filters. Signal Process. 86(9), 2430–2438 (2006)

    Article  MATH  Google Scholar 

  3. J. Benesty, C. Paleologu, S. Ciochina, On the identification of bilinear forms with the Wiener filter. IEEE Signal Process. Lett. 24(5), 653–657 (2017)

    Article  Google Scholar 

  4. H.K. Baik, V.J. Mathews, Adaptive lattice bilinear filters. IEEE Trans. Signal Process. 41(6), 2033–2046 (1993)

    Article  MATH  Google Scholar 

  5. B. Chen, L. Xing, B. Xu, H. Zhao, N. Zheng, J.C. Príncipe, Kernel risk-sensitive loss: definition, properties and application to robust adaptive filtering. IEEE Trans. Signal Process. 65(11), 2888–2901 (2017)

    Article  MathSciNet  Google Scholar 

  6. B. Chen, L. Xing, H. Zhao, N. Zheng, J.C. Principe, Generalized correntropy for robust adaptive filtering. IEEE Trans. Signal Process. 64(13), 3376–3387 (2016)

    Article  MathSciNet  Google Scholar 

  7. B. Chen, L. Xing, J. Liang, N. Zheng, J.C. Principe, Steady-state mean-square error analysis for adaptive filtering under the maximum correntropy criterion. IEEE Signal Process. Lett. 21(7), 880–884 (2014)

    Article  Google Scholar 

  8. B. Chen, J. Wang, H. Zhao, N. Zheng, J.C. Principe, Convergence of a fixed-point algorithm under maximum correntropy criterion. IEEE Signal Process. Lett. 22(10), 1723–1727 (2015)

    Article  Google Scholar 

  9. P.S.R. Diniz, Adaptive Filtering: Algorithms and Practical Implementation, 4th edn. (Springer, New York, 2013)

    Book  MATH  Google Scholar 

  10. U. Forssen, Adaptive bilinear digital filters. IEEE Trans. Circuits Systems-II: Analog Digit. Signal Process. 40, 729–735 (1993)

    Article  Google Scholar 

  11. M. Ferrer, M.D. Diego, A. Gonzalez, G. Piñero, Convex combination of affine projection algorithms, in Proceedings of 17th European Signal Processing Conference, UK (2009), pp. 431–435

  12. R. Hu, H.M. Hassan, Echo cancellation in high speed data transmission systems using adaptive layered bilinear filters. IEEE Trans. Commun. 42(234), 655–663 (1994)

    Google Scholar 

  13. S.M. Kuo, H.T. Wu, Nonlinear adaptive bilinear filters for active noise control systems. IEEE Trans. Circuits Syst. I Regul. Pap. 52(3), 617–624 (2005)

    Article  MathSciNet  Google Scholar 

  14. T. Koh, E.J. Powers, Second-order Volterra filtering and its application to nonlinear system identification. IEEE Trans. Acoust. Speech Signal Process. ASSP 33(6), 1445–1455 (1985)

    Article  MATH  Google Scholar 

  15. L.S. Li, V.J. Mathews, Efficient block-adaptive parallel-cascade quadratic filters. IEEE Trans. Circuits Syst. II 46(4), 468–472 (1999)

    Article  Google Scholar 

  16. L. Lu, H. Zhao, A novel convex combination of LMS adaptive filter for system identification, in 2014 12th International Conference on Signal Processing (ICSP), (China, Hangzhou, 2014), pp. 225–229

  17. L. Lu, H. Zhao, B. Champagne, Distributed nonlinear system identification in α -stable noise. IEEE Signal Process. Lett. 25(7), 979–983 (2018)

    Article  Google Scholar 

  18. L. Lu, H. Zhao, Adaptive combination of affine projection sign subband adaptive filters for modeling of acoustic paths in impulsive noise environments. Int. J. Speech Technol. 19(4), 907–917 (2017)

    Article  MathSciNet  Google Scholar 

  19. L. Lu, H. Zhao, B. Chen, Collaborative adaptive Volterra filters for nonlinear system identification in α-stable noise environments. J. Frankl. Inst. 353(17), 4500–4525 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. W. Liu, P.P. Pokharel, J.C. Principe, Correntropy: properties and applications in non-gaussian signal processing. IEEE Trans. Signal Process. 55(11), 5286–5298 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. G.-K. Ma, J. Lee, V. J. Mathews, A RLS bilinear filter for channel equalization, in Proceedings of IEEE ICASSP, (1994), pp. 257–260

  22. S. Marsi, G.L. Sicuranza, On reduced-complexity approximation of quadratic filters, in Proceedings of 27th Asilomar Conference Signals, Systems, Computers, Pacific Grove, (CA, 1993), pp. 1026–1030

  23. V.J. Mathews, G.L. Sicuranza, Polynomial Signal Processing (Wiley, Hoboken, 2000)

    Google Scholar 

  24. V.J. Mathews, Adaptive polynomial filters. IEEE Signal Process. Mag. 8(3), 10–26 (1991)

    Article  Google Scholar 

  25. V. H. Nascimento, R. C. de Lamare, A low-complexity strategy for speeding up the convergence of convex combinations of adaptive filters, in IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (Kyoto, Japan, 2012), pp. 3553–3556

  26. A. Navia-Vazquez, J. Arenas-Garcia, Combination of recursive least p-norm algorithms for robust adaptive filtering in alpha-stable noise. IEEE Trans. Signal Process. 60(3), 1478–1482 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. T.M. Panicker, V. John, Mathews, Parallel-cascade realizations and approximations of truncated Volterra systems. IEEE Trans. Signal Process. 46(10), 2829–2832 (1998)

    Article  Google Scholar 

  28. C. Paleologu, J. Benesty, S. Ciochina, An NLMS algorithm for the identification of bilinear forms, in Proceedings of EUSIPCO, (2017), pp. 2620–2624

  29. C. Paleologu, S. Ciochina, J. Benesty, Analysis of an LMS algorithm for bilinear forms, in Digital Signal Processing (DSP), 2017 22nd International Conference on. IEEE, (2017), pp. 1–5

  30. M.T.M. Silva, V.H. Nascimento, Improving the tracking capability of adaptive filters via convex combination. IEEE Trans. Signal Process. 56(7), 3137–3149 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  31. A. Singh, J. C. Principe, Using correntropy as a cost function in linear adaptive filters, in Proceedings of IEEE 2009 International Joint Conference Neural Network, (2009), pp. 2950–2955

  32. L. Shi, Y. Lin, Convex combination of adaptive filters under the maximum correntropy criterion in impulsive interference. IEEE Signal Process. Lett. 21(11), 1385–1388 (2014)

    Article  Google Scholar 

  33. G. Sicuranza, Quadratic filters for signal processing. Proc. IEEE 80(8), 1263–1285 (1992)

    Article  Google Scholar 

  34. M. Schetzen, Nonlinear system modeling based on the Wiener theory. Proc. IEEE 69(12), 1557–1573 (1981)

    Article  Google Scholar 

  35. M. Schetzen, Volterra and Wiener Theory of the Nonlinear Systems (Wiley, New York, 1980)

    MATH  Google Scholar 

  36. L. Tan, J. Jiang, Nonlinear active noise control using diagonalchannel LMS and RLS bilinear filters, in Proceedings of IEEE MWSCAS, (2014), pp. 789–792

  37. B. Weng, K.E. Barner, Nonlinear system identification in impulsive environments. IEEE Trans. Signal Process. 53(7), 2588–2594 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  38. W. Wang, H. Zhao, B. Chen, Robust adaptive Volterra filter under maximum correntropy criteria in impulsive environments. Circuits Syst. Signal Process. 36(10), 4097–4117 (2017)

    Article  MATH  Google Scholar 

  39. W. Wang, H. Zhao, Performance analysis of diffusion least mean fourth algorithm over network. Signal Process. 141, 32–47 (2017)

    Article  Google Scholar 

  40. S. Zhao, B. Chen, J. C. Principe, Kernel adaptive filtering with maximum correntropy criterion, in Proceedings of IEEE International Joint Conference on Neural Network, (2011), pp. 2012–2017

  41. Y. Yu, H. Zhao, Adaptive combination of proportionate NSAF with the tap-weights feedback for Acoustic echo cancellation. Wireless Pers. Commun. 92(2), 467–481 (2017)

    Article  Google Scholar 

  42. Y. Yu, H. Zhao, Novel combination schemes of individual weighting factors sign subband adaptive filter algorithm. Int. J. Adapt. Contr. Signal Process. 31(8), 1193–1204 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  43. H. Zhao, X. Zeng, Z. He, T. Li, W. Jin, Nonlinear adaptive filter-based simplified bilinear model for multichannel active control of nonlinear noise processes. Appl. Acoust. 74(12), 1414–1421 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Doctoral Innovation Fund Program of Southwest Jiaotong University (Grant: D-CX201715) and the National Science Foundation of P.R. China (Grant: 61271340, 61571374 and 61433011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiquan Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Zhao, H., Lu, L. et al. Robust Nonlinear Adaptive Filter Based on Kernel Risk-Sensitive Loss for Bilinear Forms. Circuits Syst Signal Process 38, 1876–1888 (2019). https://doi.org/10.1007/s00034-018-0928-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-018-0928-z

Keywords

Navigation