Skip to main content
Log in

A Frequency Demodulator Based on Adaptive Sampling Frequency Phase-Locking Scheme for Large Deviation FM Signals

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

A frequency demodulation scheme based on adaptive sampling frequency phase-locking loop (PLL) is proposed for extracting large deviation message signal from sinusoidal frequency-modulated signals. The proposed scheme has been designed to track the frequency-modulated input signal using a look-up-table and adaptively changing the sampling period. While tracking the carrier signal, the numerically controlled oscillator involved in the PLL structure produces the sampling frequency according to the variation of input frequency. In the PLL, the message signal has been extracted at the output of proportional integral controller. Simulation results prove that the PLL exhibits quick acquisition behavior, wide operating range, negligible steady-state error. Experimental investigation validates the efficacy of the proposed PLL performance in message signal extraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. T. Addabbo, A. Fort, R. Biondi, S. Cioncolini, M. Mugnaini, S. Rocchi, V. Vignoli, Measurement of angular vibrations in rotating shafts: effects of the measurement setup non idealities. IEEE Trans. Instrum. Meas. 62(3), 532–543 (2013)

    Article  Google Scholar 

  2. R.E. Best, Phase-Locked Loops Design, Simulation, and Applications, 5th edn. (McGraw Hill, New York, 2003)

    Google Scholar 

  3. I. Carugati, P. Donato, S. Maestri, D. Carrica, M. Benedetti, Frequency adaptive PLL for polluted single-phase grids. IEEE Trans. Power Electron. 27(5), 2396–2404 (2012)

    Article  Google Scholar 

  4. I. Carugati, S. Maestri, P. Donato, D. Carrica, M. Benedetti, Variable sampling period filter PLL for distorted three-phase systems. IEEE Trans. Power Electron. 27(1), 321–330 (2012)

    Article  Google Scholar 

  5. F. Colodro, A. Torralba, Frequency-to-digital conversion based on sampled phase-locked loop with third-order noise shaping. IET Electron. Lett. 47(19), 1069–1070 (2011)

    Article  Google Scholar 

  6. S. Engelberg, E. Chalom, Measuring the spectral content of a signal: an introduction. IEEE Instrum. Meas. Mag. 13(6), 34–38 (2010)

    Article  Google Scholar 

  7. G. Fedele, A. Ferrise, A frequency-locked-loop filter for biased multi-sinusoidal estimation. IEEE Trans. Signal Process. 62(5), 1125–1134 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. H. Gheidi, A. Banai, An ultra-broadband direct demodulator for microwave FM receivers. IEEE Trans. Microw. Theory Tech. 59(8), 2131–2139 (2011)

    Article  Google Scholar 

  9. W. Godycki, R. Dokania, X. Wang, A. Apsel, A high-speed, on-chip implementation of Teager Kaiser operator for in-band interference rejection, in Proceedings of the IEEE Asian Solid State Circuits conference (A-SSCC), Beijing, China, pp. 1–4 (2010)

  10. S. Kadam, D. Sasidaran, A. Awawdeh, L. Johnson, M. Soderstrand, Comparison of various numerically controlled oscillators, in Proceedings of the 45th Midwest Symposium on Circuits and Systems (MWSCAS), Tulsa, USA, vol. 3, pp. 200–202 (2002)

  11. M. Kunita, M. Sudo, S. Inoue, M. Akahane, A new method for blood velocity measurements using ultrasound FMCW signals. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57(5), 1064–1076 (2010)

    Article  Google Scholar 

  12. P. Levesque, M. Sawan, Real-time hand-held ultrasound medical-imaging device based on a new digital quadrature demodulation processor. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56(8), 1654–1665 (2009)

    Article  Google Scholar 

  13. R. Lyons, A. Bell, The swiss army knife of digital networks. IEEE Signal Process. Mag. 21(3), 90–100 (2004)

    Article  Google Scholar 

  14. B.P. McGrath, D.G. Holmes, J.J.H. Galloway, Power converter line synchronization using a discrete Fourier transform (DFT) based on variable sampling rate. IEEE Trans. Power Electron. 20(4), 877–884 (2005)

    Article  Google Scholar 

  15. M.A. Perez, J.R. Espinoza, L.A. Moran, M.A. Torres, E.A. Araya, A robust phase-locked loop algorithm to synchronize static power converters with polluted AC systems. IEEE Trans. Ind. Electron. 55(5), 2185–2192 (2008)

    Article  Google Scholar 

  16. R. Punchalard, J. Koseeyaporn, P. Wardkein, Novel digital FM demodulation, in Proceedings of the IEEE Region 10 Conference (TENCON), Singapore, pp. 1–4 (2009)

  17. F. Ramirez, V. Arana, A. Suarez, Frequency demodulator using an injection-locked oscillator: analysis and design. IEEE Trans. Microw. Wirel. Compon. Lett. 18(1), 43–45 (2008)

    Article  Google Scholar 

  18. F. Schadt, F. Mohr, M. Holzer, FM demodulation of IQ baseband signals using Kalman filters, in Proceedings of the 18th IEEE International Conference Radioelektronika, Prague, Czech Republic, pp. 1–4 (2008)

  19. B. Schlecker, M. Ortmanns, J. Anders, G. Fantner, PLL-based high-speed demodulation of FM signals for real-time AFM applications, in Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS), Beijing, China, pp. 197–200 (2013)

  20. G. Sell, M. Slaney, Solving demodulation as an optimization problem. IEEE Trans. Audio Speech Lang. Process. 18(8), 2051–2066 (2010)

    Article  Google Scholar 

  21. K. Singh, P. Sumathi, Moving-window DFT based frequency-locked loop for FM demodulation. IEEE Commun. Lett. 20(5), 898–901 (2016)

    Article  Google Scholar 

  22. P. Sumathi, A frequency demodulation technique based on sliding DFT phase locking scheme for large variation FM signals. IEEE Commun. Lett. 16(11), 1864–1867 (2012)

    Article  Google Scholar 

  23. P. Sumathi, P. Janakiraman, Integrated phase locking scheme for SDFT based harmonic analysis of periodic signals. IEEE Trans. Circuits Syst. II Express Briefs 55(1), 51–55 (2008)

    Article  Google Scholar 

  24. P. Sumathi, P. Janakiraman, Phase locking scheme based on look-up-table-assisted sliding discrete Fourier transform for low-frequency power and acoustic signals. IET Circuits Devices Syst. 5(6), 494–504 (2011)

    Article  Google Scholar 

  25. B. Tietche, O. Romain, B. Denby, F. Dieuleveult, FPGA-based simultaneous multichannel FM broadcast receiver for audio indexing applications in consumer electronics scenarios. IEEE Trans. Consum. Electron. 58(4), 1153–1161 (2012)

    Article  Google Scholar 

  26. C. Turner, Recursive discrete-time sinusoidal oscillators. IEEE Signal Process. Mag. 20(3), 103–111 (2003)

    Article  Google Scholar 

  27. V. Vajpayee, P. Sumathi, Adaptive sampling frequency based phase locking scheme for single-phase grid converters, in Proceedings of the International Conference on Communication and Signal Processing, Melmaruvathur, India, pp. 293–297 (2013)

  28. A. Venkitaraman, C. Seelamantula, A technique to compute smooth amplitude, phase, and frequency modulations from the analytic signal. IEEE Signal Process. Lett. 19(10), 623–626 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vineet Vajpayee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vajpayee, V., Sumathi, P. & George, A.K. A Frequency Demodulator Based on Adaptive Sampling Frequency Phase-Locking Scheme for Large Deviation FM Signals. Circuits Syst Signal Process 38, 1717–1735 (2019). https://doi.org/10.1007/s00034-018-0933-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-018-0933-2

Keywords

Navigation