Skip to main content
Log in

Higher-Order Derivative Sampling Associated with Fractional Fourier Transform

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

The uniform and recurrent nonuniform higher-order derivative sampling problems associated with the fractional Fourier transform are investigated in this paper. The reconstruction formulas of a bandlimited signal from the uniform and recurrent nonuniform derivative sampling points are obtained. It is shown that if a bandlimited function f(t) has \(n - 1\) order derivative in fractional Fourier transform domain, then f(t) is determined by its uniform sampling points \(f^{(l)}(knT)(l=0,1,\ldots ,n-1)\) or recurrent nonuniform sampling points \(f^{(l)}(n(t_{p}+kNT))(l=0,1,\ldots ,n-1;p=1,2,\ldots ,N)\), the related sampling rate is also reduced by n times. The examples and simulations are also performed to verify the derived results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. L.B. Almeida, The fractional Fourier transform and time-frequency representations. IEEE Trans. Signal Process. 42(11), 3084–3091 (1994)

    Article  Google Scholar 

  2. V. Bargmann, On a Hilbert space of analytic functions and an associated integral transform part I. Commun. Pure Appl. Math. 14(3), 187–214 (2010)

    Article  MATH  Google Scholar 

  3. K.W. Cattermole, The Fourier transform and its applications. Electron. Power 11(10), 357 (2009)

    Article  Google Scholar 

  4. I. Daubechies, The wavelet transform, time-frequency localization and signal analysis. IEEE Trans. Inf. Theory 36(5), 961–1005 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  5. Y.C. Eldar, A.V. Oppenheim, Filterbank reconstruction of bandlimited signals from nonuniform and generalized samples. IEEE Trans. Signal Process. 48(10), 2864–2875 (2000)

    Article  MathSciNet  Google Scholar 

  6. V.D.O. Edwin, J. Renneboog, Some formulas and applications of nonuniform sampling of bandwidth-limited signals. IEEE Trans. Instrum. Meas. 37(3), 353–357 (1988)

    Article  Google Scholar 

  7. Q. Feng, B.Z. Li, Convolution theorem for fractional cosine–sine transform and its application. Math. Methods Appl. Sci. 40(10), 3651–3665 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  8. L. Fogel, A note on the sampling theorem. IRE Trans. Inf. Theory 1(1), 47–48 (2003)

    Article  Google Scholar 

  9. J.J. Healy, M.A. Kutay, H.M. Ozaktas, J.T. Sheridan, Linear Canonical Transforms (Springer, New York, 2016), pp. 241–245

    Book  MATH  Google Scholar 

  10. Y.C. Jenq, Digital spectra of nonuniformly sampled signals: fundamentals and high-speed waveform digitizers. IEEE Trans. Instrum. Meas. 37(2), 245–251 (1988)

    Article  Google Scholar 

  11. D.L. Jagerman, L.J. Fogel, Some general aspects of the sampling theorem. Inf. Theory Ire Trans. 2(4), 139–146 (1956)

    Article  Google Scholar 

  12. B.Z. Li, R. Tao, Y. Wang, New sampling formulae related to linear canonical transform. Signal Process. 87(5), 983–990 (2007)

    Article  MATH  Google Scholar 

  13. Y. Li, Second order derivative sampling and its application into image scaling, in IEEE International Conference on Communication Software and Networks (IEEE, 2015), pp. 299–305

  14. Y.P. Lin, P.P. Vaidyanathan, Periodically nonuniform sampling of bandpass signals. IEEE Trans. Circuits Syst. II Analog Digital Signal Process. 45(3), 340–351 (1998)

    Article  Google Scholar 

  15. D.A. Linden, N.M. Abramson, A generalization of the sampling theorem. Inf. Control 3(1), 26–31 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  16. A.C. Mcbride, F.H. Kerr, On Namias’s fractional Fourier transforms. IMA J. Appl. Math. 39(2), 159–175 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  17. F. Marvasti, Nonuniform Sampling: Theory and Practice (Kluwer Academic/Plenum Publishers, Dordrecht, 2001), pp. 121–156

    Book  MATH  Google Scholar 

  18. M. Moshinsky, C. Quesne, Linear canonical transformations and their unitary representations. J. Math. Phys. 12(8), 1772–1780 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  19. R.J. Marks, Advanced Topics in Shannon Sampling and Interpolation Theory (Springer, Berlin, 1993), pp. 130–131

    Book  MATH  Google Scholar 

  20. V. Namias, The fractional order Fourier transform and its application to quantum mechanics. Geoderma 25(3), 241–265 (1980)

    MathSciNet  MATH  Google Scholar 

  21. A. Nathan, On sampling a function and its derivatives. Inf. Control 22(2), 172–182 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  22. A.V. Oppenheim, R.W. Schafer, Discrete-time signal processing. Electron. Power 23(2), 157 (2009)

    Google Scholar 

  23. H.M. Ozaktas, M.A. Kutay, Z. Zalevsky, The Fractional Fourier Transform with Applications in Optics and Signal Processing (Wiley, London, 2001)

    Google Scholar 

  24. H.M. Ozaktas, O. Aytür, Fractional Fourier domains. Signal Process. 46(1), 119–124 (1995)

    Article  MATH  Google Scholar 

  25. A. Papoulis, Generalized sampling expansion. IEEE Trans. Circuits Syst. 24(11), 652–654 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  26. C.E. Shannon, Communication in the presence of noise. Proc. Ire. 86(1), 10–21 (1998)

    Article  MathSciNet  Google Scholar 

  27. E. Sejdić, I. Djurović, L. Stanković, Fractional Fourier transform as a signal processing tool: an overview of recent developments. Signal Process. 91(6), 1351–1369 (2011)

    Article  MATH  Google Scholar 

  28. S. Shinde, V.M. Gadre, An uncertainty principle for real signals in the fractional Fourier transform domain. IEEE Trans. Signal Process. 49(11), 2545–2548 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  29. C.C. Tseng, S.L. Lee, On the reconstruction of derivative sampling method of band-limited signal. Signal Process. 129, 166–182 (2016)

    Article  Google Scholar 

  30. R. Tao, B.Z. Li, Y. Wang, Spectral analysis and reconstruction for periodic nonuniformly sampled signals in fractional Fourier domain. IEEE Trans. Signal Process. 55(7), 3541–3547 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  31. G. Xu, X. Wang, X. Xu, The logarithmic, Heisenberg’s and short-time uncertainty principles associated with fractional Fourier transform. Signal Process. 89(3), 339–343 (2009)

    Article  MATH  Google Scholar 

  32. T.Z. Xu, B.Z. Li, Linear Canonical Transform and its Application (Science Press, Ottawa, 2013), pp. 665–670

    Google Scholar 

  33. J. Yen, On Nonuniform sampling of bandwidth-limited signals. IRE Trans. Circuit Theory 3(4), 251–257 (1956)

    Article  Google Scholar 

  34. K. Yao, J. Thomas, On some stability and interpolatory properties of nonuniform sampling expansions. IEEE Trans. Circuit Theory 14(4), 404–408 (1967)

    Article  Google Scholar 

  35. Y.N. Zhang, B.Z. Li, \(\phi \)-Linear canonical analytic signals. Signal Process. 143, 181–190 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing-Zhao Li.

Additional information

This work is supported by the National Natural Science Foundation of China (No. 61671063) and (No. 61861044).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jing, RM., Feng, Q. & Li, BZ. Higher-Order Derivative Sampling Associated with Fractional Fourier Transform. Circuits Syst Signal Process 38, 1751–1774 (2019). https://doi.org/10.1007/s00034-018-0936-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-018-0936-z

Keywords

Navigation