Skip to main content
Log in

Extended Reciprocal Convex Techniques on Synchronization in Time-Delay Neutral Lur’e Systems

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper studies the master–slave synchronization in a class of time-delay neutral Lur’e systems. Firstly, an augmented Lyapunov–Krasovskii functional (LKF) is constructed after fully utilizing the restrictions on time-varying delay and nonlinearities. Then, an extended reciprocal convex technique is proposed to estimate the LKF’s derivative, and some less conservative conditions are presented in terms of linear matrix inequalities. Furthermore, our methods can be applied to tackle more general cases such as the systems with different time-delays, delay-partitioning idea, and triple LKF method. Finally, two numerical examples are given to show the effectiveness and benefits of the proposed methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. H. Ahmed, I. Salgado, H. Rios, Robust synchronization of master–slave chaotic systems using approximate model: an experimental study. ISA Trans. 73, 141–146 (2018)

    Article  Google Scholar 

  2. Z. Cai, L. Huang, L. Zhang, Finite-time synchronization of master–slave neural networks with time-delays and discontinuous activations. Appl. Math. Model. 47, 208–226 (2017)

    Article  MathSciNet  Google Scholar 

  3. T. Carroll, L. Pecora, Synchronization in chaotic circuits. IEEE Trans. Circuits Syst. I 38, 453–56 (1991)

    Article  Google Scholar 

  4. W. Chen, D. Wei, X. Lu, Global exponential synchronization of nonlinear time-delay Lur’e systems via delayed impulsive control. Commun. Nonlinear Sci. Numer. Simul. 19(9), 3298–3312 (2014)

    Article  MathSciNet  Google Scholar 

  5. Y. Guo, Exponential stability analysis of traveling waves solutions for nonlinear delayed cellular neural networks. Dyn. Syst. 32(4), 490–503 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Y. Guo, Global stability analysis for a class of Cohen–Grossberg neural network models. Bull. Korean Math. Soc. 49(6), 1193–1198 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Y. Guo, Mean square exponential stability of stochastic delay cellular neural networks. Electron. J. Qual. Theory Differ. Equ. 34, 1–10 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Y. Guo, Globally robust stability analysis for stochastic Cohen–Grossberg neural networks with impulse control and time-varying delays. Ukr. Math. J. 69(8), 1220–1233 (2018)

    Article  MathSciNet  Google Scholar 

  9. C. Hua, X. Guan, Master–slave synchronization criteria of Lur’e systems with time-delay feedback control. Appl. Math. Comput. 244(1), 895–902 (2014)

    MathSciNet  MATH  Google Scholar 

  10. C. Hua, C. Ge, X. Guan, Synchronization of chaotic Lur’e systems with time delays using sampled-data control. IEEE Trans. Neural Netw. Learn. Syst. 26(6), 1214–1221 (2015)

    Article  MathSciNet  Google Scholar 

  11. H. Huang, G. Feng, Synchronization of nonidentical chaotic neural networks with time delays. Neural Netw. 22, 869–874 (2009)

    Article  MATH  Google Scholar 

  12. H. Huang, G. Feng, Y. Sun, Robust synchronization of chaotic systems subject to parameter uncertainties. Chaos 19, 033128 (2009)

    Article  MATH  Google Scholar 

  13. H. Huang, G. Feng, J. Cao, Exponential synchronization of chaotic Lur’e systems with delayed feedback control. Nonlinear Dyn. 57, 441–453 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. H. Huang, G. Feng, Robust \(H_\infty \) synchronization of chaotic Lur’e systems. Chaos 18, 033113 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. X. Ji, M. Ren, H. Su, On designing time-delay feedback controller for master-slave synchronization of Lur’e systems. Asian J. Control 16(1), 308–312 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. K. Ko, W. Lee, P. Park, D. Sun, Delays-dependent region partitioning approach for stability criterion of linear systems with multiple time-varying delays. Automatica 87, 389–394 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  17. T. Lee, J. Park, Improved criteria for sampled-data synchronization of chaotic Lur’e systems using two new approaches. Nonlinear Anal. Hybrid Syst. 24, 132–145 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  18. T. Li, G. Zhang, S. Fei, S. Zhang, Further criteria on master–slave synchronization in chaotic Lur’e systems using delay feedback control. Circuits Syst. Signal Process. 35(8), 2992–3014 (2016)

    Article  MATH  Google Scholar 

  19. T. Li, T. Wang, A. Song, S. Fei, Delay-derivative-dependent stability for delayed neural networks with unbounded distributed delay. IEEE Trans. Neural Netw. 21, 1365–1371 (2010)

    Article  Google Scholar 

  20. B. Liu, X. Jia, New absolute stability criteria for uncertain Lur’e systems with time-varying delays. J. Frankl. Inst. 355(9), 4015–4031 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  21. P. Liu, Robust absolute stability criteria for uncertain Lurie interval time-varying delay systems of neutral type. ISA Trans. 60, 2–11 (2016)

    Article  Google Scholar 

  22. X. Liu, D. Ho, Q. Song, W. Xu, Finite/fixed-time pinning synchronization of complex networks with stochastic disturbances. IEEE Trans. Cybern. https://doi.org/10.1109/TCYB.2018.2821119

  23. X. Liu, J. Cao, W. Yu, Q. Song, Nonsmooth finite-time synchronization of switched coupled neural networks. IEEE Trans. Cybern. 46(10), 2360–2371 (2016)

    Article  Google Scholar 

  24. L. Long, C. Zhang, Y. He, L. Jiang, M. Wu, Stability analysis of Lur’e systems with additive delay components via a relaxed matrix inequality. Appl. Math. Comput. 328, 224–242 (2018)

    MathSciNet  Google Scholar 

  25. S. Ma, Y. Kang, Exponential synchronization of delayed neutral-type neural networks with Levy noise under non-Lipschitz condition. Commun. Nonlinear Sci. Numer. Simul. 57, 372–387 (2018)

    Article  MathSciNet  Google Scholar 

  26. J. Park, S. Lee, P. Park, An improved stability criteria for neutral-type Lur’e systems with time-varying delays. J. Frankl. Inst. 355(12), 5291–5309 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  27. J. Park, S. Lee, P. Park, An improved fragmentation approach to sampled-data synchronization of chaotic Lur’e systems. Nonlinear Anal. Hybrid Syst. 29, 333–347 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  28. S. Senan, M. Ali, R. Vadivel, S. Arik, Decentralized event-triggered synchronization of uncertain Markovian jumping neutral-type neural networks with mixed delays. Neural Netw. 86, 32–41 (2017)

    Article  Google Scholar 

  29. H. Shen, S. Huo, J. Cao, T. Huang, Generalized state estimation for Markovian coupled networks under Round-Robin protocol and redundant channels. IEEE Trans. Cybern. https://doi.org/10.1109/TCYB.2018.2799929

  30. H. Shen, F. Li, H. Yan, H. Karimi, H. Lam, Finite-time event-triggered \(H_\infty \) control for T-S fuzzy Markov jump systems. IEEE Trans. Fuzzy Syst. https://doi.org/10.1109/TFUZZ.2017.2788891

  31. Y. Sheng, H. Zhang, Z. Zeng, Synchronization of reaction–diffusion neural networks with dirichlet boundary conditions and infinite delays. IEEE Trans. Cybern. 47(10), 3005–3017 (2017)

    Article  Google Scholar 

  32. K. Shi, X. Liu, S. Zhong, C. Yin, Novel delay-dependent master–slave synchronization criteria of chaotic Lur’e systems with time-varying-delay feedback control. Appl. Math. Comput. 282(5), 137–154 (2016)

    MathSciNet  MATH  Google Scholar 

  33. K. Shi, Y. Tang, X. Liu, S. Zhong, Non-fragile sampled-data robust synchronization of uncertain delayed chaotic Lurie systems with randomly occurring controller gain fluctuation. ISA Trans. 66, 185–199 (2017)

    Article  Google Scholar 

  34. K. Shi, X. Liu, H. Zhu, S. Zhong, Novel integral inequality approach on master-slave synchronization of chaotic delayed Lur’e systems with sampled-data feedback control. Nonlinear Dyn. 83(3), 1259–1274 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  35. R. Sivasamy, R. Rakkiyappan, Improved stability criteria for neutral type Lur’e systems with time-varying delays. Appl. Math. Lett. 38, 168–173 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  36. J. Sun, G. Liu, J. Chen, D. Rees, Improved delay-range-dependent stability criteria for linear systems with time-varying delays. Automatica 46(2), 466–470 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  37. J. Tao, Z. Wu, H. Su, Y. Wu, Asynchronous and resilient filtering for Markovian jump neural networks subject to extended dissipativity. IEEE Trans. Cybern. https://doi.org/10.1109/TCYB.2018.2824853

  38. Y. Wan, J. Cao, G. Wen, Quantized synchronization of chaotic neural networks with scheduled output feedback control. IEEE Trans. Neural Netw. Learn. Syst. 28(11), 2638–2647 (2017)

    Article  MathSciNet  Google Scholar 

  39. Y. Wang, X. Zhang, Y. He, Improved delay-dependent robust stability criteria for a class of uncertain mixed neutral and Lur’e dynamical systems with interval time-varying delays and sector-bounded nonlinearity. Nonlinear Anal. Real World Appl. 13(5), 2188–2194 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  40. T. Wang, S. Zhao, W. Zhou, W. Yu, Finite-time master–slave synchronization and parameter identification for uncertain Lurie systems. ISA Trans. 53(4), 1184–1190 (2014)

    Article  Google Scholar 

  41. R. Zhang, C. Zeng, S. Zhong, K. Shi, New approach on designing stochastic sampled-data controller for exponential synchronization of chaotic Lur’e systems. Nonlinear Anal. Hybrid Syst. 29, 303–321 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  42. R. Zhang, C. Zeng, S. Zhong, Novel master–slave synchronization criteria of chaotic Lur’e systems with time delays using sampled-data control. J. Frankl. Inst. 354(12), 4930–4954 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  43. C. Zhang, Y. He, L. Jiang, M. Wu, Notes on stability of time-delay systems, bounding inequalities and augmented Lyapunov–Krasovskii functionals. IEEE Trans. Autom. Control 62, 5331–5336 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  44. C. Zhang, Y. He, L. Jiang, M. Wu, An extended reciprocally convex matrix inequality for stability analysis of systems with time-varying delay. Automatica 85, 481–485 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  45. F. Zhang, H. Trentelman, J. Scherpen, Fully distributed robust synchronization of networked Lur’e systems with incremental nonlinearities. Automatica 50(11), 2515–2526 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  46. C. Zheng, Z. Wei, Z. Wang, Robustly adaptive synchronization for stochastic Markovian neural networks of neutral type with mixed mode-dependent delays. Neurocomputing 171(1), 1254–1264 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (Nos. 61873123, 61873127), Natural Science Foundation of Jiangsu Province (Nos. BK20171419, BK20150888), Natural Science Foundation for Jiangsu’s Universities (No. 15KJB12004), and Fundamental Research Fund for Central Universities (Nos. NS2016030, NJ20160024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, T., Shen, S., Tang, X. et al. Extended Reciprocal Convex Techniques on Synchronization in Time-Delay Neutral Lur’e Systems. Circuits Syst Signal Process 38, 1942–1961 (2019). https://doi.org/10.1007/s00034-018-0946-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-018-0946-x

Keywords

Navigation