Skip to main content
Log in

Design of Low-redundant Cosine-modulated Nonuniform Filter Bank with Flexible Frequency Division

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, a low-redundant cosine-modulated nonuniform filter bank (LR-CMNFB) and its design method are proposed. The proposed LR-CMNFB consists of two parallel subsystems which have the same frequency division scheme. The nonuniform analysis and synthesis filters of the first subsystem are formed by directly merging the consecutive cosine-modulated versions of a lowpass prototype filter, and the filters of the second subsystem are derived to meet the aliasing cancelation condition. Since the aliasing of the two subsystems is structurally canceled without guardband constraint on the filter location, the shift-invariance and flexible nonuniform frequency division, two important properties in many signal and image processing applications, can be achieved simultaneously at the cost of low redundancy (that is less than 2). From a particular analysis on the filter characteristic and the reconstruction error of the whole system, it is found that the good characteristics of filters and the good reconstruction performance of LR-CMNFB can be jointly obtained by constraining the prototype filter to be the linear-phase spectral factor of a 2 Mth band filter. Several design examples are given to illustrate the performance of the proposed LR-CMNFB and its potential in practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S. Akkarakaran, P.P. Vaidyanathan, Nonuniform filter banks: new results and open problems. Beyond Wavelets Stud. Comput. Math. 10, 259–301 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. K.T. Andersen, M. Moonen, Adaptive time-frequency analysis for noise reduction in an audio filter bank with low delay. IEEE/ACM Trans. Audio Speech Lang. Process. 24(4), 784–795 (2016)

    Article  Google Scholar 

  3. K.S. Chong, B.H. Gwee, J.S. Chang, A 16-channel low-power nonuniform spaced filter bank core for digital hearing aids. IEEE Trans. Circuits Syst. II Express Briefs 53(9), 853–857 (2006)

    Article  Google Scholar 

  4. Z. Cvetkovic, Nonuniform oversampled filter banks for audio signal processing. IEEE Trans. Speech Audio Process. 11(5), 393–399 (2003)

    Article  Google Scholar 

  5. Z. Cvetkovic, M. Vetterli, Oversampled filter banks. IEEE Trans. Signal Process. 46(5), 1245–1255 (1998)

    Article  Google Scholar 

  6. Y. Deng, V.J. Mathews, B.F. Borouieny, Low-delay nonuniform pseudo-QMF banks with application to speech enhancement. IEEE Trans. Signal Process. 55(5), 2110–2121 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. B. Dumitrescu, R. Bregovic, T. Saramaki, Design of low-delay nonuniform oversampled filterbanks. Signal Process. 88(10), 2518–2525 (2008)

    Article  MATH  Google Scholar 

  8. P. Faus, A. Gonzalez, P. Zuccarello, A. Vidal, Oversampled nonuniform filter banks using quadratic optimization and transition filters. Electron. Lett. 43(10), 594–595 (2007)

    Article  Google Scholar 

  9. E. Galijasevic, J. Kliewer, Design of allpass-based nonuniform oversampled DFT filter banks, in Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, Orlando USA (2002), p. 1181–1184

  10. M. Harteneck, S. Weiss, R.W. Stewart, Design of near perfect reconstruction oversampled filter banks for subband adaptive filters. IEEE Trans. Circuits Syst. II Analog Digital Signal Process. 46(8), 1081–1085 (1999)

    Article  Google Scholar 

  11. S.G. Huang, L. Tian, X.J. Ma, Y. Wei, A reconfigurable sound wave decomposition filterbank for hearing aids based on nonlinear transformation. IEEE Trans. Biomed. Circuits Syst. 10(2), 487–496 (2016)

    Article  Google Scholar 

  12. S. Kalathil, E. Elias, Efficient design of non-uniform cosine modulated filter banks for digital hearing aids. Int. J. Electron. Commun. 69(9), 1314–1320 (2015)

    Article  Google Scholar 

  13. H.H. Kha, H.D. Tuan, T.Q. Nguyen, Efficient design of cosine-modulated filter banks via convex optimization. IEEE Trans. Signal Process. 57(3), 966–976 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. N. Kingsbury, Complex wavelets for shift invariant analysis and filtering of signals. Appl. Comput. Harmon. Anal. 10(3), 234–253 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. J. Kovacevic, M. Vetterli, Perfect reconstruction filter banks with rational sampling factors. IEEE Trans. Signal Process. 41(6), 2047–2066 (1993)

    Article  MATH  Google Scholar 

  16. S. Kyochi, M. Ikehara, A class of near shift-invariant and orientation-selective transform based on delay-less oversampled even-stacked cosine-modulated filter banks. IEICE Trans. Fundam. Electron Commun. Comput. Sci. 93(4), 724–733 (2010)

    Article  Google Scholar 

  17. L. Li, X.M. Xie, S.C. Chan, Design of perfect-reconstruction nonuniform filter banks with linear-phase property, in Proceedings of European Signal Processing Conference, Glasgow Scotland (2009), p. 383–387

  18. J.L. Li, T.Q. Nguyen, S. Tanraratana, A simple design method for near-perfect reconstruction nonuniform filter banks. IEEE Trans. Signal Process. 45(8), 2105–2109 (1997)

    Article  Google Scholar 

  19. L.L. Liang, H. Liu, Dual-tree cosine-modulated filter bank with linear-phase individual filters: an alternative shift-invariant and directional-selective transform. IEEE Trans. Image Process. 22(12), 5168–5180 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. L.L. Liang, H. Liu, F.P. Wang, Design of shift-invariant nonuniform cosine-modulated filter bank with arbitrary integer sampling factors. Digit. Signal Process. 53(C), 41–50 (2016)

    Article  Google Scholar 

  21. B.W.K. Ling, C.Y.F. Ho, K.L. Teo, W.C. Siu, J. Cao, Q. Dai, Optimal design of cosine modulated nonuniform linear phase FIR filter bank via both stretching and shifting frequency response of single prototype filter. IEEE Trans. Signal Process. 62(10), 2517–2530 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. H.W. Lollmann, P. Vary, Least-squares design of DFT filter banks based on all pass transformation of higher order. IEEE Trans. Signal Process. 58(4), 2393–2398 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. R.C. Nongpiur, D.J. Shpak, Maximizing the signal-to-alias ratio in nonuniform filter banks for acoustic echo cancellation. IEEE Trans. Circuits Syst. I Regul. Pap. 59(10), 2315–2325 (2012)

    Article  MathSciNet  Google Scholar 

  24. M. Parfieniuk, A. Petrovsky, Near-perfect reconstruction oversampled nonuniform cosine-modulated filter banks based on frequency warping and subband merging. Int. J. Electron. Telecom. 58(2), 177–192 (2012)

    Google Scholar 

  25. A. Schasse, T. Gerkmann, R. Martin, W. Sorgel, T. Pilgrim, H. Puder, Two-stage filter bank system for improved signal-channel noise reduction in hearing aids. IEEE/ACM Trans. Audio Speech Lang. Process. 23(2), 383–393 (2015)

    Article  Google Scholar 

  26. I.W. Selesnick, R.G. Baraniuk, N.G. Kingsbury, The dual-tree complex wavelet transform. IEEE Signal Process. Mag. 22(6), 123–151 (2005)

    Article  Google Scholar 

  27. G. Strang, T.Q. Nguyen, Wavelets and filter banks (Wellesley-Cambridge, Wellesley, 1997)

    MATH  Google Scholar 

  28. P.P. Vaidyanathan, Multirate digital filters, filter banks, polyphase networks, and applications: a tutorial. Proc. IEEE 78(1), 56–93 (1990)

    Article  Google Scholar 

  29. P.P. Vaidyanathan, Multirate Systems and Filter Banks (Prentice-Hall, New Jersey, 1993)

    MATH  Google Scholar 

  30. X.M. Xie, S.C. Chan, T.I. Yuk, Design of perfect-reconstruction nonuniform recombination filter banks with flexible rational sampling factors. IEEE Trans. Circuits Syst. I Regul. Pap. 52(9), 1965–1981 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

The work is supported in part by the National Natural Science Foundation of China under Grands 61403305, 61873200 and 61873201, in part by the Key Project of Shaanxi Key Research and Development Program under Grant 2018ZDXM-GY-089, in part by the Research Project of Shaanxi Provincial Education Department under Grant 2017JS088.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lili Liang.

Appendices

Appendix A

In this appendix, we give the detailed explanation of (13). Based on (12), \( z^{ - N} H_{k} (z^{ - 1} ) \) has the following expression,

$$ z^{ - N} H_{k} (z^{ - 1} ) = z^{ - N} \sqrt {\frac{{d_{k} }}{2}} \sum\limits_{{i = m_{k - 1} p_{k - 1} }}^{{m_{k} p_{k} - 1}} {\left[ {e^{{ - j\beta_{i} }} U_{i}^{*} (z^{ - 1} ) + e^{{j\beta_{i} }} U_{i} (z^{ - 1} )} \right]} . $$
(37)

\( U_{i}^{*} (z^{ - 1} ) \) has the same magnitude response with \( U_{i} (z) \), and \( U_{i} (z^{ - 1} ) \) has the same magnitude response with \( U_{i}^{*} (z) \). Observing (12) and (37), it can be seen that, in order for \( F_{k} (z) \) to be the time-reversed version of \( H_{k} (z) \), that is, \( F_{k} (z) = z^{ - N} H_{k} (z^{ - 1} ) \), the following condition should be satisfied,

$$ e^{{j\gamma_{i} }} U_{i} (z) = z^{ - N} e^{{ - j\beta_{i} }} U_{i}^{*} (z^{ - 1} ). $$
(38)

Substituting (9) into (38) yields

$$ e^{{j\gamma_{i} }} P\left( {zW_{2M}^{(i + 0.5)} } \right) = z^{ - N} e^{{ - j\beta_{i} }} P\left( {z^{ - 1} W_{2M}^{ - (i + 0.5)} } \right). $$
(39)

Since \( P(z) \) is a linear-phase lowpass filter, it is related as

$$ P(z) = z^{ - N} P(z^{ - 1} ). $$
(40)

Replacing z with \( zW_{2M}^{(i + 0.5)} \) in (40), we have

$$ P\left( {zW_{2M}^{i + 0.5} } \right) = z^{ - N} W_{2M}^{ - (i + 0.5)N} P\left( {z^{ - 1} W_{2M}^{ - (i + 0.5)} } \right). $$
(41)

Substituting (41) into (39), the condition (37) finally becomes

$$ e^{{j(\beta_{i} + \gamma_{i} )}} = W_{2M}^{(i + 0.5)N} . $$
(42)

Appendix B

This appendix gives the derivation of (33). Since \( P(e^{j\omega } ) \) is a linear-phase lowpass filter and has the order of \( 2L \), \( G(e^{j\omega } ) = |P(e^{j\omega } )|^{2} \) has zero phase and the order of \( 4L \). Substituting (31), \( G(e^{j\omega } ) \) can be written as,

$$ \begin{aligned} G(e^{j\omega } ) & = P(e^{j\omega } ) \cdot P^{*} (e^{ - j\omega } ) \\ & = e^{ - j\omega L} {\mathbf{b}}^{T} {\boldsymbol{\upvarphi }}(\omega ) \cdot {\boldsymbol{\upvarphi }}^{T} ( - \omega ){\mathbf{b}}e^{j\omega L} \\ & = {\mathbf{b}}^{T} \underbrace {{{\boldsymbol{\upvarphi }}(\omega ){\boldsymbol{\upvarphi }}^{T} ( - \omega )}}_{{{\varvec{\Phi}}(\omega )}}{\mathbf{b}}, \\ \end{aligned} , $$
(43)

where \( {\varvec{\Phi}}(\omega ) \) is a \( (L + 1) \times (L + 1) \) matrix. Since \( {\boldsymbol{\upvarphi }}(\omega ) = [1,\cos \omega , \ldots ,\cos (L\omega )]^{T} , \) the \( (i,j) \) th element of \( {\varvec{\Phi}}(\omega ) \) is computed as

$$ \begin{aligned} {\varvec{\Phi}}_{i,j} (\omega ) & = \cos (i\omega )\cos (j\omega ) \\ & = \frac{1}{2}\left[ {\cos \left( {(i + j)\omega } \right) + \cos \left( {(i - j)\omega } \right)} \right], \\ \end{aligned} $$
(44)

which indicates that the position \( (i,j) \) of the term \( \cos (n\omega ) \) for \( n = 0,1, \ldots ,2L \) in \( {\varvec{\Phi}}(\omega ) \) satisfies \( i + j = n \) or \( |i - j| = n \). Accordingly, it is straightforward to get the following expression,

$$ {\varvec{\Phi}}(\omega ) = \sum\limits_{n = 0}^{2L} {{\mathbf{S}}_{n} \cos (n\omega )} , $$
(45)

where \( {\mathbf{S}}_{n} \) is a \( (L + 1) \times (L + 1) \) matrix with the \( (i,j) \) th element \( {\mathbf{S}}_{n} (i,j) = 0.5\left[ {\delta (i + j - n) + \delta (|i - j| - n)} \right] \). Substituting (45) into (43), we have

$$ \begin{aligned} G\left( {e^{j\omega } } \right) & = {\mathbf{b}}^{T} \left[ {\sum\limits_{n = 0}^{2L} {{\mathbf{S}}_{n} \cdot \cos (n\omega )} } \right]{\mathbf{b}} \\ & = \sum\limits_{n = 0}^{2L} {{\mathbf{b}}^{T} {\mathbf{S}}_{n} {\mathbf{b}} \cdot \cos (n\omega )} , \\ \end{aligned} $$
(46)

which is just the expression of (33).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, L. Design of Low-redundant Cosine-modulated Nonuniform Filter Bank with Flexible Frequency Division. Circuits Syst Signal Process 38, 2297–2319 (2019). https://doi.org/10.1007/s00034-018-0970-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-018-0970-x

Keywords

Navigation