Skip to main content
Log in

Noise-Induced Resonance and Particle Swarm Optimization-Based Weak Signal Detection

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

The noise always plays a key role in different science and engineering applications. Here, we study the effect of the addition of external noise (i.e., stochastic resonance (SR) noise) in weak signal detection application. We also explore the conditions of improvability and non-improvability for a particular SR noise. We analyze both symmetric and asymmetric SR noises in our example. With certain equality and inequality constraints, we discuss the penalty function method which is used to design a single objective function. Furthermore, the particle swarm optimization technique has been used to maximize the probability of detection (\(P_\mathrm{D}\)) at a constant value of the probability of false alarm (\(P_\mathrm{FA}\)). With a numerical example, we have exhibited the performance of the proposed detector. We compare our proposed detection technique with the state-of-the-art techniques, and it is observed that the optimum \(P_\mathrm{D}\) is comparable at a constant value of \(P_\mathrm{FA}\). The proposed detection technique is also used for watermark detection application to show the practicality of the proposed technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M. Anitescu, On solving mathematical programs with complementarity constraints as nonlinear programs. Preprint ANL/MCS-P864-1200, Argonne National Laboratory, Argonne, IL, vol. 3 (2000)

  2. M. Anitescu, Global convergence of an elastic mode approach for a class of mathematical programs with complementarity constraints. SIAM J. Optim. 16, 120–145 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. M. Bell, Y. Kochman, On composite binary hypothesis testing with training data, in Fifty-Fifth Annual Allerton Conference, pp. 1026–1033 (2017)

  4. H.Y. Benson, A. Sen, D.F. Shanno, R.J. Vanderbei, Interior-point algorithms, penalty methods and equilibrium problems. Comput. Optim. Appl. 34, 155–182 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. D.P. Bertsekas, Constrained Optimization and Lagrange Multiplier Methods (Academic press, Cambridge, 1982)

    MATH  Google Scholar 

  6. E.G. Birgin, J.M. Martínez, Practical augmented Lagrangian methods for constrained optimization, in Society for Industrial and Applied Mathematics (SIAM) (2014). https://doi.org/10.1137/1.9781611973365

  7. S. Boyd, L. Vandenberghe, Convex Optimization (Cambridge University Press, Cambridge, 2004)

    Book  MATH  Google Scholar 

  8. R.H. Byrd, N.I.M. Gould, J. Nocedal, R.A. Waltz, An algorithm for non-linear optimization using linear programming and equality constrained sub-problems. Math. Program. 100, 27–48 (2004)

    MathSciNet  MATH  Google Scholar 

  9. R.H. Byrd, J. Nocedal, R.A. Waltz, Steering Exact Penalty Methods for Optimization Optimization Technology Center, Northwestern University, Evanston, IL, USA, Tech. 60208 (2006)

  10. H. Chen, P.K. Varshney, S.M. Kay, J.H. Michels, Theory of stochastic resonance effects in signal detection: part I-fixed detectors. IEEE Trans. Signal Process. 55, 3172–3184 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. H. Chen, P.K. Varshney, J.H. Michels, Denoising noisy images with noise, in Forty-First Asilomar Conference on Signal, Systems, and Computers, pp. 513–517 (2007)

  12. L. Chen, D. Goldfarb, Interior-point \({\mathscr {L}}\)2 penalty methods for nonlinear programming with strong global convergence properties, in Mathematical Programming, vol 108 (Springer, 2006), pp. 1–36

  13. R. Chouhan, R.K. Jha, P.K. Biswas, Enhancement of dark and low contrast images using dynamic stochastic resonance. IET Image Process. 7, 174–184 (2013)

    Article  MathSciNet  Google Scholar 

  14. J.J. Collins, C.C. Chow, T.T. Imhoff, Stochastic resonance without tuning. Nature 376, 236–238 (1995)

    Article  Google Scholar 

  15. I.J. Cox, J. Kilian, F.T. Leighton, T. Shamoon, Secure spread spectrum watermarking for multimedia. IEEE Trans. Image Process. 6, 1673–1687 (1997)

    Article  Google Scholar 

  16. X.J. Dong, A.J. Yan, Stochastic resonance in a linear static system driven by correlated multiplicative and additive noises. Appl. Math. Model. 38, 2915–2921 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. J.K. Douglass, L. Wilkens, E. Pantazelou, F. Moss, Noise enhancement of information transfer in crayfish mechanoreceptors by stochastic resonance. Nature 365, 337–340 (1993)

    Article  Google Scholar 

  18. E. Elbeltagi, T. Hegazy, D. Grierson, Comparison among five evolutionary-based optimization algorithms. Adv. Eng. Inf. 19, 43–53 (2005)

    Article  Google Scholar 

  19. L. Gammaitoni, P. Hänggi, P. Jung, F. Marchesoni, Stochastic resonance. Rev. Mod. Phys. 70, 223 (1998)

    Article  Google Scholar 

  20. P.P. Gandhi, V. Ramamurti, Neural networks for signal detection in non-Gaussian noise. IEEE Trans. Signal Process. 45, 2846–2851 (1997)

    Article  Google Scholar 

  21. P.E. Gill, W. Murray, M.A. Saunders, SNOPT: an SQP algorithm for large-scale constrained optimization. SIAM Rev. 47, 99–131 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. N.I.M. Gould, D. Orban, P.L. Toint, An interior-point \({\mathscr {L}}\)1-penalty method for nonlinear optimization (Technical Report). Rutherford Appleton Laboratory (2003)

  23. G. Guo, M. Mandal, Y. Jing, A robust detector of known signal in non-Gaussian noise using threshold system. Signal Process. 92, 2676–2688 (2012)

    Article  Google Scholar 

  24. G. Guo, M. Mandal, Y. Jing, Optimal design of noise-enhanced binary threshold detector under AUC measure. IEEE Signal Process. Lett. 20, 161–164 (2013)

    Article  Google Scholar 

  25. N. Halay, K. Todros, A.O. Hero, Binary hypothesis testing via measure transformed quasi-likelihood ratio test. IEEE Trans. Signal Process. 65, 6381–6396 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  26. G.P. Harmer, B.R. Davis, D. Abbott, A review of stochastic resonance: Circuits and measurement. IEEE Trans. Instrum. Meas. 51, 299–309 (2002)

    Article  Google Scholar 

  27. R. Hassan, B. Cohanim, O. De Weck, G. Venter, A comparison of particle swarm optimization and the genetic algorithm, in 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics (2005)

  28. Q. He, J. Wang, Effects of multiscale noise tuning on stochastic resonance for weak signal detection. Digit. Signal Process. 22, 614–621 (2012)

    Article  MathSciNet  Google Scholar 

  29. A. Histace, D. Rousseau, Constructive action of noise for impulsive noise removal in scalar images. IEEE Electron. Lett. 42, 393–395 (2006)

    Article  Google Scholar 

  30. M.-O. Hongler, Y.L. Meneses, A. Beyeler, J. Jacot, The resonant retina: exploiting vibration noise to optimally detect edges in an image. IEEE Trans. Pattern Anal. Mach. Intell. 25, 1051–1062 (2003)

    Article  Google Scholar 

  31. X.M. Hu, D. Ralph, Convergence of a penalty method for mathematical programming with complementarity constraints. J. Optim. Theory Appl. 123, 365–390 (2004)

    Article  MathSciNet  Google Scholar 

  32. R.K. Jha, R. Chouhan, K. Aizawa, P.K. Biswas, Dark and low-contrast image enhancement using dynamic stochastic resonance in discrete cosine transform domain. APSIPA Trans. Signal Inf. Process. 2, 1–18 (2013)

    Article  Google Scholar 

  33. R.K. Jha, R. Chouhan, Noise induced contrast enhancement using stochastic resonance on singular values. Signal Image Video Process. 8, 339–347 (2014)

    Article  Google Scholar 

  34. R.K. Jha, R. Chouhan, Dynamic stochastic resonance-based grayscale logo extraction technique in combined SVD-DCT domain. J. Frankl. Inst. 351, 2938–2965 (2014)

    Article  MATH  Google Scholar 

  35. Y. Jiang, S. Yin, Recent results on key performance indicator oriented fault detection using the DB-KIT toolbox, in Industrial Electronics Society, Annual Conference of the IEEE, pp. 7103–7108 (2017)

  36. Y. Jiang, N. Zhao, Z. Yin, H. Yu, Study on recent developments of residual generation design approach based on available process measurements, in International Conference on Industrial Technology (ICIT), pp. 973–978 (2016)

  37. N.F. Johnson, S. Jadodia, Exploring steganography: seeing the unseen. IEEE Comput. 31, 26–34 (1998)

    Article  Google Scholar 

  38. S. Kay, Can detectability be improved by adding noise? IEEE Signal Process. Lett. 7, 8–10 (2000)

    Article  Google Scholar 

  39. O. Krishna, R.K. Jha, A.K. Tiwari, B. Soni, Noise induced segmentation of noisy color image, in NCC, pp. 1–5 (2013)

  40. B. Kosko, Noise (Penguin, London, 2006)

    Google Scholar 

  41. I. Lee, X. Liu, C. Zhou, B. Kosko, Noise-enhanced detection of subthreshold signals with carbon nanotubes. IEEE Trans. Nanotechnol. 5, 613–627 (2006)

    Article  Google Scholar 

  42. J.E. Levin, J.P. Miller, Broadband neural encoding in the cricket cercal sensory system enhanced by stochastic resonance. Nature 380, 165–168 (1996)

    Article  Google Scholar 

  43. S. Leyffer, G. López-Calva, J. Nocedal, Interior methods for mathematical programs with complementarity constraints. SIAM J. Optim. 17, 52–77 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  44. H. Li, J. Bi, Y. Shen, Propagation and enhancement of the noise-induced signal in a coupled cell system. Appl. Math. Model. 35, 2682–2687 (2011)

    Article  MATH  Google Scholar 

  45. Y. Li, R. Song, W. Wang, Particle swarm optimization of compression measurement for signal detection. Circuits, Syst. Signal Process. 31, 1109–1126 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  46. S. Liu, T. Yang, X. Zhang, X. Hu, L. Xu, Noise enhanced binary hypothesis-testing in a new framework. Digit. Signal Process. 41, 22–31 (2015)

    Article  MathSciNet  Google Scholar 

  47. B. McNamara, K. Wiesenfeld, Theory of stochastic resonance. Phys. Rev. A 39, 4854 (1989)

    Article  Google Scholar 

  48. S. Mitaim, B. Kosko, Adaptive stochastic resonance. Proc. IEEE 86, 2152–2183 (1998)

    Article  Google Scholar 

  49. M. Mongeau, A. Sartenaer, Automatic decrease of the penalty parameter in exact penalty function methods. Eur. J. Oper. Res. 83, 686–699 (1995)

    Article  MATH  Google Scholar 

  50. F. Moss, F. Chiou-Tan, F.R. Klinke, Will there be noise in their ears? Nat. Med. 2, 860–862 (1996)

    Article  Google Scholar 

  51. M. Naderpour, A. Ghobadzadeh, A. Tadaion, S. Gazor, Generalized Wald test for binary composite hypothesis test. IEEE Signal Process. Lett. 22, 2239–2243 (2015)

    Article  Google Scholar 

  52. A. Patel, B. Kosko, Stochastic resonance in noisy spiking retinal and sensory neuron models. Neural Netw. 18, 467–478 (2005)

    Article  MATH  Google Scholar 

  53. A. Patel, B. Kosko, Optimal noise benefits in Neyman–Pearson and inequality-constrained statistical signal detection. IEEE Trans. Signal Process. 57, 1655–1669 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  54. C.I. Podilchuk, E.J. Delp, Digital watermarking: algorithms and applications. IEEE Signal Process. Mag. 18, 33–46 (2001)

    Article  Google Scholar 

  55. Y. Rahmat-Samii, D. Gies, J. Robinson, Particle swarm optimization (PSO): a novel paradigm for antenna designs. URSI Radio Sci. Bull. 76, 14–22 (2003)

    Google Scholar 

  56. A. Ren, Y. Wang, A novel penalty function method for semivectorial bilevel programming problem. Appl. Math. Model. 40, 135–149 (2016)

    Article  MathSciNet  Google Scholar 

  57. D. Rousseau, G.V. Anand, F. Chapeau-Blondeau, Noise-enhanced nonlinear detector to improve signal detection in non-Gaussian noise. Signal Process. 86, 3456–3465 (2006)

    Article  MATH  Google Scholar 

  58. H. Scheel, S. Scholtes, Mathematical programs with complementarity constraints: stationarity, optimality and sensitivity. Math. Oper. Res. 25, 1–22 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  59. S. Sun, B. Lei, On an aperiodic stochastic resonance signal processor and its application in digital watermarking. Signal Process. 88, 2085–2094 (2008)

    Article  MATH  Google Scholar 

  60. H. Urkowitz, Energy detection of unknown deterministic signals. Proc. IEEE 55, 523–531 (1967)

    Article  Google Scholar 

  61. J. Vesterstrom, R. Thomsen, A comparative study of differential evolution, particle swarm optimization and evolutionary algorithms on numerical benchmark problems. IEEE Cong. Evolut. Comput. 2, 1980–1987 (2004)

    Google Scholar 

  62. K. Wiesenfeld, F. Moss, Stochastic resonance and the benefits of noise: from ice ages to crayfish and squids. Nature 373, 33–36 (1995)

    Article  Google Scholar 

  63. S. Yin, Y. Jiang, Y. Tian, O. Kaynak, A data-driven fuzzy information granulation approach for freight volume forecasting. IEEE Trans. Ind. Electron. 64, 1447–1456 (2017)

    Article  Google Scholar 

  64. Z. Yu, J. Lin, J. Sun, Y. Xiao, L. Liu, Z. Li, Spectral gradient projection method for monotone nonlinear equations with convex constraints. Appl. Numer. Math. 59, 2416–2423 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  65. F.G. Zeng, Q.J. Fu, R. Morse, Human hearing enhanced by noise. Brain Res. 869, 251–255 (2000)

    Article  Google Scholar 

  66. Y.L. Zhang, Q.Y. Zhang, T. Melodia, A frequency-domain entropy-based detector for robust spectrum sensing in cognitive radio networks. IEEE Commun. Lett. 14, 1089–7798 (2010)

    Article  Google Scholar 

  67. Z. Zhu, A sequential equality constrained quadratic programming algorithm for inequality constrained optimization. J. Comput. Appl. Math. 212, 112–125 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  68. S. Zozor, P.-O. Amblard, On the use of stochastic resonance in sine detection. Signal Process. 82, 353–367 (2002)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This publication is an outcome of the research and development (R&D) work undertaken in the project under the Visvesvaraya Ph.D. Scheme of Ministry of Electronics and Information Technology, Government of India, being implemented by Digital India Corporation (Formerly Media Lab Asia) (Grant No. U72900MH2001NPL133410). We also express our deep gratitude to the anonymous reviewers for their highly professional recommendations, instructions and motivation which contributed significantly to improve the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajib Kumar Jha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Jha, R.K. Noise-Induced Resonance and Particle Swarm Optimization-Based Weak Signal Detection. Circuits Syst Signal Process 38, 2677–2702 (2019). https://doi.org/10.1007/s00034-018-0987-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-018-0987-1

Keywords

Navigation