Skip to main content
Log in

Underdetermined Independent Component Analysis Based on First- and Second-Order Statistics

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper proposes a class of new algorithms based on first- and second-order statistics for independent source extraction of circular signals in underdetermined complex-valued mixture. The complex-valued mixing matrix is estimated by two extremely cost-effective novel methods based on the conditional mean of the mixtures which require some prior knowledge of the positive support of the real and/or imaginary parts of the sources. And the sources are recovered by combining the conventional minimum mean-squared error-based beamforming approach with the acquired prior knowledge. Based on how much prior knowledge is got, we propose several new algorithms. The complexity analysis about the proposed algorithms suggests that the algorithms which employ more prior knowledge have higher complexity, but their computational cost is significantly low. Two examples are provided for showing the possible applications of these proposed algorithms. Simulation results validate the effectiveness and reliability of all presented methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. L. Albera, A. Ferreol, P. Comon et al., Blind identification of overcomplete mixtures of sources (BIOME). Linear Algebra Appl. 391, 1–30 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. P. Bofill, M. Zibulevsky, Underdetermined blind source separation using sparse representations. Signal Process. 81(11), 2353–2362 (2001)

    Article  MATH  Google Scholar 

  3. R.M. Clemente, S.H. Mellado, J.L.C. Olivares, Fast independent component analysis using a new property, in International Work Conference on Artificial Neural Networks (IWANN) (2011), pp. 477–483

  4. P. Comon, C. Jutten et al., Handbook of Blind Source Separation: Independent Component Analysis and Applications (Academic Press, New York, 2010)

    Google Scholar 

  5. S.H. Hsu, T.R. Mullen, T.P. Jung et al., Real-time adaptive EEG source separation using online recursive independent component analysis. IEEE Trans. Neural Syst. Rehabil. Eng. 24(3), 309–319 (2016)

    Article  Google Scholar 

  6. A. Karfoul, L. Albera, D.L. Lathauwer, Iterative methods for the canonical decomposition of multi-way arrays: application to blind underdetermined mixture identification. Signal Process. 91(8), 1789–1802 (2011)

    Article  MATH  Google Scholar 

  7. S. Kim, C.D. Yoo, Underdetermined blind source separation based on subspace representation. IEEE Trans. Signal Process. 57(7), 2604–2614 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Z. Koldovský, P. Tichavský, A.H. Phan et al., A two-stage MMSE beamformer for underdetermined signal separation. IEEE Signal Process. Lett. 20(12), 1227–1230 (2013)

    Article  Google Scholar 

  9. D. Kumar, C.S. Rai, S. Kumar, Analysis of unsupervised learning techniques for face recognition. Int. J. Imaging Syst. Technol. 20(3), 261–267 (2010)

    Article  Google Scholar 

  10. D.L. Lathauwer, J. Castaing, J.F. Cardoso, Fourth-order cumulant based blind identification of underdetermined mixtures. IEEE Trans. Signal Process. 55(6), 2965–2973 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. D.L. Lathauwer, J. Castaing, Blind identification of underdetermined mixtures by simultaneous matrix diagonalization. IEEE Trans. Signal Process. 56(3), 1096–1105 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. H. Lin, T. Thaiupathump, S.A. Kassam, Blind separation of complex I/Q independent sources with phase recovery. IEEE Signal Process. Lett. 12(5), 419–422 (2005)

    Article  Google Scholar 

  13. F. Petre, M. Engels, A. Bourdoux et al., Extended MMSE receiver for multiuser interference rejection in multipath DS-CDMA channels, in Vehicular Technology Conference, vol. 3 (1999), pp. 1840–1844

  14. R. Phlypo, V. Zarzoso, I. Lemahieu, Source extraction by maximizing the variance in the conditional distribution tails. IEEE Trans. Signal Process. 58(1), 305–316 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. G.K. Sang, D.Y. Chang, Underdetermined independent component analysis by data generation, in Independent Component Analysis and Blind Source Separation (ICA) (2004), pp. 445–452

  16. P.F. Stenumgaard, On radiated emission limits for pulsed interference to protect modern digital wireless communication systems. IEEE Trans. Electromagn. Compat. 49(4), 931–936 (2007)

    Article  Google Scholar 

  17. Q. Su, Y. Shen, Y. Wei et al., SSP-based UBI algorithms for uniform linear array. Circuits Syst. Signal Process. 36(10), 4077–4096 (2017)

    Article  MATH  Google Scholar 

  18. Q. Su, Y. Wei, C. Deng et al., Fast extraction for skewed source signals using conditional expectation. J. Sens. 2018, 1–6 (2018)

    Google Scholar 

  19. P. Tichavský, Z. Koldovský, Weight adjusted tensor method for blind separation of underdetermined mixtures of nonstationary sources. IEEE Trans. Signal Process. 59(3), 1037–1047 (2011)

    Article  Google Scholar 

  20. B. Xerri, B. Borloz, An iterative method using conditional second-order statistics applied to the blind source separation problem. IEEE Trans. Signal Process. 52(2), 313–328 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. P.C. Xu, Y.H. Shen, H. Li et al., Independent component analysis of complex valued signals based on first-order statistics. Radioengineering 22(4), 1194–1201 (2013)

    Google Scholar 

  22. L. Yang, H. Zhang, Y. Cai, A low-complexity PARAFAC decomposition for underdetermined blind system identification with complex mixtures. Circuits Syst. Signal Process. 37, 4842–4860 (2018)

    Article  MathSciNet  Google Scholar 

  23. Z. Yang, Y. Xiang, Y. Rong et al., A convex geometry-based blind source separation method for separating nonnegative sources. IEEE Trans. Neural Netw. 26(8), 1635–1644 (2015)

    Article  MathSciNet  Google Scholar 

  24. W. Yu, R. Lui, Dual methods for nonconvex spectrum optimization of multicarrier systems. IEEE Trans. Commun. 54(7), 1310–1322 (2006)

    Article  Google Scholar 

  25. V. Zarzoso, R.M. Clemente, S.H. Mellado, Independent component analysis based on first-order statistics. Signal Process. 92(8), 1779–1784 (2012)

    Article  Google Scholar 

  26. H. Zhu, S. Zhang, H. Zhao, Single-channel source separation of multi-component radar signal with the same generalized period using ICA. Circuits Syst. Signal Process. 35(1), 353–363 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant Nos. 61172061 and 61201242 and the Natural Science Foundation of Jiang Su Province in China under Grant No. BK2012057.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiao Su.

Appendix: Derivation of Formula (9)

Appendix: Derivation of Formula (9)

We show the derivation from Eqs. (8) to (9). Note that Eq. (8) can be easily simplified in the real case, while it is more complicate for the complex case. We omit the t in following derivation for convenience and rewrite the object function as

$$\begin{aligned} - E\{ {| {{s_j} - {{\hat{s}}_j}} |^2}\}= & {} - \,E\{ {({\mathrm{Re}} \{ {s_j}\} - {\mathrm{Re}} \{ {{\hat{s}}_j}\} )^2} + {({\mathrm{Im}} \{ {s_j}\} - {\mathrm{Im}} \{ {{\hat{s}}_j}\} )^2}\} \nonumber \\= & {} - \,E\{ {{\mathrm{Re}} ^2}\{ {s_j}\} + {{\mathrm{Im}} ^2}\{ {s_j}\} \} - E\{ {{\mathrm{Re}} ^2}\{ {{\hat{s}}_j}\} + {{\mathrm{Im}} ^2}\{ {{\hat{s}}_j}\} \} \nonumber \\&+\,2E\{ {\mathrm{Re}} \{ {s_j}\} {\mathrm{Re}} \{ {{\hat{s}}_j}\} + {\mathrm{Im}} \{ {s_j}\} {\mathrm{Im}} \{ {{\hat{s}}_j}\} \}. \end{aligned}$$
(24)

The term \(E\{ {{\mathrm{Re}} ^2}\{ {s_j}\} + {{\mathrm{Im}} ^2}\{ {s_j}\} \} \) in Eq. (24) is irrelevant to \({\mathbf{w}}_j\), so we cut out this term in the object function. By employing \({\widehat{s}_j}(t) = {\mathbf{w}}_j^\mathrm{{H}}(t){\mathbf{x}}(t)\), \(E\{ {{\mathrm{Re}} ^2}\{ {{\hat{s}}_j}\} \} \) is computed by

$$\begin{aligned} E\{ {{\mathrm{Re}} ^2}\{ {{\hat{s}}_j}\} \}= & {} E\left\{ {({\mathrm{Re}} \{ {\mathbf{w}}_j^\mathrm{{H}}\} {\mathrm{Re}} \{ {\mathbf{x}}\} - {\mathrm{Im}} \{ {\mathbf{w}}_j^\mathrm{{H}}\} {\mathrm{Im}} \{ {\mathbf{x}}\} )^2} \right\} \nonumber \\= & {} {\mathrm{Re}} \left\{ {\mathbf{w}}_j^\mathrm{{H}}\} E\{ {\mathrm{Re}} \{ {\mathbf{x}}\} {\mathrm{Re}} \{ {{\mathbf{x}}^\mathrm{{T}}}\} \} {\mathrm{Re}} \{ {\mathbf{w}}_j^*\right\} \nonumber \\&+\,{\mathrm{Im}} \left\{ {\mathbf{w}}_j^\mathrm{{H}}\} E\{ {\mathrm{Im}} \{ {\mathbf{x}}\} {\mathrm{Im}} \{ {{\mathbf{x}}^\mathrm{{T}}}\} \} {\mathrm{Im}} \{ {\mathbf{w}}_j^*\right\} \nonumber \\&-\,2{\mathrm{Re}} \left\{ {\mathbf{w}}_j^\mathrm{{H}}\} E\{ {\mathrm{Re}} \{ {\mathbf{x}}\} {\mathrm{Im}} \{ {{\mathbf{x}}^\mathrm{{T}}}\} \} {\mathrm{Im}} \{ {\mathbf{w}}_j^*\right\} , \end{aligned}$$
(25)

where the superscript \({\left( \cdot \right) ^*}\) denotes the conjugate operator. Similarly, \(E\{ {{\mathrm{Im}} ^2}\{ {{\hat{s}}_j}\} \} \) is expressed as

$$\begin{aligned} E\{ {{\mathrm{Im}} ^2}\{ {{\hat{s}}_j}\} \}= & {} {\mathrm{Im}} \{ {\mathbf{w}}_j^\mathrm{{H}}\} E\{ {\mathrm{Re}} \{ {\mathbf{x}}\} {\mathrm{Re}} \{ {{\mathbf{x}}^\mathrm{{T}}}\} \} {\mathrm{Im}} \{ {\mathbf{w}}_j^*\} \nonumber \\&+\,{\mathrm{Re}} \{ {\mathbf{w}}_j^\mathrm{{H}}\} E\{ {\mathrm{Im}} \{ {\mathbf{x}}\} {\mathrm{Im}} \{ {{\mathbf{x}}^\mathrm{{T}}}\} \} {\mathrm{Re}} \{ {\mathbf{w}}_j^*\} \nonumber \\&+\,2{\mathrm{Im}} \{ {\mathbf{w}}_j^\mathrm{{H}}\} E\{ {\mathrm{Re}} \{ {\mathbf{x}}\} {\mathrm{Im}} \{ {{\mathbf{x}}^\mathrm{{T}}}\} \} {\mathrm{Re}} \{ {\mathbf{w}}_j^*\}. \end{aligned}$$
(26)

Set \({\mathbf{D}} = E\{ {\mathrm{Re}} \{ {\mathbf{x}}\} {{\mathrm{Re}} ^\mathrm{{T}}}\{ {\mathbf{x}}\} \} + E\{ {\mathrm{Im}} \{ {\mathbf{x}}\} {{\mathrm{Im}} ^\mathrm{{T}}}\{ {\mathbf{x}}\} \} \)\({\mathbf{G}} = E\{ {\mathrm{Re}} \{ {\mathbf{x}}\} {{\mathrm{Im}} ^\mathrm{{T}}}\{ {\mathbf{x}}\} \} \). Stack up \({\mathbf{D}}\) and \({\mathbf{G}}\) into \({\mathbf{Q}} = \left( {\begin{array}{*{20}{c}} {\mathbf{D}}&{}\quad {\mathbf{0}}\\ {\mathbf{0}}&{}\quad {\mathbf{D}} \end{array}} \right) \) and \({\mathbf{U}} = \left( {\begin{array}{*{20}{c}} {\mathbf{0}}&{}\quad { -\, {\mathbf{G}}}\\ {\mathbf{G}}&{}\quad {\mathbf{0}} \end{array}} \right) \), respectively. The term \(E\{ {{\mathrm{Re}} ^2}\{ {{\hat{s}}_j}\} + {{\mathrm{Im}} ^2}\{ {{\hat{s}}_j}\} \} \) in Eq . (24) becomes

$$\begin{aligned} E\{ {{\mathrm{Re}} ^2}\{ {{\hat{s}}_j}\} + {{\mathrm{Im}} ^2}\{ {{\hat{s}}_j}\} \}= & {} E\left\{ {{\mathrm{Re}} ^2}\{ {{\hat{s}}_j}\} \} + E\{ {{\mathrm{Im}} ^2}\{ {{\hat{s}}_j}\} \right\} \nonumber \\= & {} {\mathrm{Re}} \left\{ {\mathbf{w}}_j^\mathrm{{H}}\} {\mathbf{D}}\;{\mathrm{Re}} \{ {\mathbf{w}}_j^*\} + {\mathrm{Im}} \{ {\mathbf{w}}_j^\mathrm{{H}}\} {\mathbf{D}}{\mathrm{Im}} \{ {\mathbf{w}}_j^*\right\} \nonumber \\&+\,2\left\{ {\mathrm{Im}} \{ {\mathbf{w}}_j^\mathrm{{H}}\} {\mathbf{G}}{\mathrm{Re}} \{ {\mathbf{w}}_j^*\} - {\mathrm{Re}} \{ {\mathbf{w}}_j^\mathrm{{H}}\} {\mathbf{G}}{\mathrm{Im}} \{ {\mathbf{w}}_j^*\} \right\} \nonumber \\= & {} \widetilde{\mathbf{w}}_j^\mathrm{{T}}({\mathbf{Q}} + 2{\mathbf{U}}){\widetilde{\mathbf{w}}_j}, \end{aligned}$$
(27)

where \({\widetilde{\mathbf{w}}_j} = {[ {\begin{array}{*{20}{c}} {{\mathrm{Re}} \{ {\mathbf{w}}_j^\mathrm{{T}}\} }&\quad { -\, {\mathrm{Im}} \{ {\mathbf{w}}_j^\mathrm{{T}}\} } \end{array}} ]^\mathrm{{T}}}\). Since \({\mathbf{x}} = {\mathbf{As}} = \sum \nolimits _{i = 1}^N {{{\mathbf{a}}_i}{s_i}} \), it can be easily got that

$$\begin{aligned}&{\mathrm{Re}} \{ {\mathbf{x}}\} = \sum \limits _{i = 1}^N {({\mathrm{Re}} \{ {{\mathbf{a}}_i}\} {\mathrm{Re}} \{ {s_i}\} - {\mathrm{Im}} \{ {{\mathbf{a}}_i}\} {\mathrm{Im}} \{ {s_i}\} )}, \nonumber \\&{\mathrm{Im}} \{ {\mathbf{x}}\} = \sum \limits _{i = 1}^N {({\mathrm{Im}} \{ {{\mathbf{a}}_i}\} {\mathrm{Re}} \{ {s_i}\} + {\mathrm{Re}} \{ {{\mathbf{a}}_i}\} {\mathrm{Im}} \{ {s_i}\} )}. \end{aligned}$$
(28)

Then, \(E\{ \mathrm{{Re}}\{ {s_j}\} \mathrm{{Re}}\{ {{\hat{s}}_j}\} \} \) is calculated to be

$$\begin{aligned} E\{ \mathrm{{Re}}\{ {s_j}\} \mathrm{{Re}}\{ {{\hat{s}}_j}\} \}= & {} E\{ \mathrm{{Re}}\{ {s_j}\} (\;{\mathrm{Re}} \{ {\mathbf{w}}_j^\mathrm{{H}}\} {\mathrm{Re}} \{ {\mathbf{x}}\} - {\mathrm{Im}} \{ {\mathbf{w}}_j^\mathrm{{H}}\} {\mathrm{Im}} \{ {\mathbf{x}}\} )\} \nonumber \\= & {} E\{ \mathrm{{R}}{\mathrm{{e}}^2}\{ {s_j}\} \} ({\mathrm{Re}} \{ {\mathbf{w}}_j^\mathrm{{H}}\} {\mathrm{Re}} \{ {{\mathbf{a}}_i}\} - {\mathrm{Im}} \{ {\mathbf{w}}_j^\mathrm{{H}}\} {\mathrm{Im}} \{ {{\mathbf{a}}_i}\} ). \end{aligned}$$
(29)

Similarly, \(E\{ {\mathrm{Im}} \{ {s_j}\} {\mathrm{Im}} \{ {{\hat{s}}_j}\} \} \) is obtained by

$$\begin{aligned} E\{ {\mathrm{Im}} \{ {s_j}\} {\mathrm{Im}} \{ {{\hat{s}}_j}\} \} = E\{ \mathrm{{I}}{\mathrm{{m}}^2}\{ {s_j}\} \} ({\mathrm{Re}} \{ {\mathbf{w}}_j^\mathrm{{H}}\} {\mathrm{Re}} \{ {{\mathbf{a}}_i}\} - {\mathrm{Im}} \{ {\mathbf{w}}_j^\mathrm{{H}}\} {\mathrm{Im}} \{ {{\mathbf{a}}_i}\} ). \end{aligned}$$
(30)

Thus, by combining Eqs. (29) and (30), the term \(E\{ {\mathrm{Re}} \{ {s_j}\} {\mathrm{Re}} \{ {{\hat{s}}_j}\} + {\mathrm{Im}} \{ {s_j}\} {\mathrm{Im}} \{ {{\hat{s}}_j}\} \} \) in Eq . (24) turns to be

$$\begin{aligned} E\{ \mathrm{{Re}}\{ {s_j}\} \mathrm{{Re}}\{ {{\hat{s}}_j}\} + \mathrm{{Im}}\{ {s_j}\} \mathrm{{Im}}\{ {{\hat{s}}_j}\} \}= & {} E\{ \mathrm{{Re}}\{ {s_j}\} \mathrm{{Re}}\{ {{\hat{s}}_j}\} \} + E\{ \mathrm{{Im}}\{ {s_j}\} \mathrm{{Im}}\{ {{\hat{s}}_j}\} \} \nonumber \\= & {} \widetilde{\mathbf{w}}_j^\mathrm{{T}}{\widetilde{\mathbf{a}}_j}, \end{aligned}$$
(31)

where \({\widetilde{\mathbf{a}}_j} = {[ {\begin{array}{*{20}{c}} {{\mathrm{Re}} \{ {\mathbf{a}}_j^\mathrm{{T}}\} }&\quad { -\, {\mathrm{Im}} \{ {\mathbf{a}}_j^\mathrm{{T}}\} } \end{array}} ]^\mathrm{{T}}}\). Then, replacing the corresponding terms in Eq. (24) by the results in Eqs. (27) and (31), we achieve the final object function shown by \(2\widetilde{\mathbf{w}}_j^\mathrm{{T}}{\widetilde{\mathbf{a}}_j} - \widetilde{\mathbf{w}}_j^\mathrm{{T}}({\mathbf{Q}} + 2{\mathbf{U}}){\widetilde{\mathbf{w}}_j}\).

Additionally, \(\mathrm{{Re}}\{ {{\hat{s}}_j}\}\) is given by

$$\begin{aligned} \mathrm{{Re}}\{ {{\hat{s}}_j}\}= & {} {\mathrm{Re}} \{ {\mathbf{w}}_j^\mathrm{{H}}\} {\mathrm{Re}} \{ {\mathbf{x}}\} - {\mathrm{Im}} \{ {\mathbf{w}}_j^\mathrm{{H}}\} {\mathrm{Im}} \{ {\mathbf{x}}\} \nonumber \\= & {} \widetilde{\mathbf{w}}_j^\mathrm{{T}}\widetilde{\mathbf{x}}, \end{aligned}$$
(32)

where \(\widetilde{\mathbf{x}} = {[ {\begin{array}{*{20}{c}} {{\mathrm{Re}} \{ {{\mathbf{x}}^\mathrm{{T}}}\} }&\quad { -\, {\mathrm{Im}} \{ {{\mathbf{x}}^\mathrm{{T}}}\} } \end{array}}]^\mathrm{{T}}}\). So, the constraint in Eq. (8) becomes \(- \widetilde{\mathbf{w}}_j^\mathrm{{T}}\widetilde{\mathbf{x}} < 0\).

This completes the proof.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, Q., Wei, Y., Shen, Y. et al. Underdetermined Independent Component Analysis Based on First- and Second-Order Statistics. Circuits Syst Signal Process 38, 3107–3132 (2019). https://doi.org/10.1007/s00034-018-0997-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-018-0997-z

Keywords

Navigation