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Abstract In this paper, we consider the problem of recovering the phase
information of multiple sources from a mixed phaseless Short-Time Fourier
Transform (STFT) measurement, which is called multiple input single output
(MISO) phase retrieval problem. It is an inherently ill-posed problem due to
the lack of the phase and mixing information, and the existing phase retrieval
algorithms are not explicitly designed for this case. To address the MISO phase
retrieval problem, a least squares (LS) method coupled with an independent
component analysis (ICA) algorithm is proposed for the case of sufficiently long
window length. When these conditions are not met, an integrated algorithm is
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presented, which combines a gradient descent (GD) algorithm by minimizing
a non-convex loss function with an ICA algorithm. Experimental evaluation
has been conducted to show that under appropriate conditions the proposed
algorithms can explicitly recover the signals, the phases of the signals and the
mixing matrix. In addition, the algorithm is robust to noise.

Keywords Multiple input single output (MISO) · phase retrieval · short-
time Fourier transform (STFT) · non-convex optimization · independent
component analysis (ICA)

1 Introduction

The problem of recovering a one-dimensional signal from its Fourier transform
magnitude, known as phase retrieval, is of paramount importance in various
engineering and scientific applications, such as X-ray crystallography [8, 27],
optics [11, 34], astronomy [9, 31], speech recognition [24, 32, 38, 39], and blind
channel estimation [1,3]. This problem has a long history and has been studied
by many researchers [5, 7, 10,12,14,18].

The phase retrieval problem originally arises from detectors that can some-
times only record the magnitude-square of the Fourier transform of a signal.
Due to a lack of Fourier phase information, some forms of additional infor-
mation are requiblack to identify the underlying signal efficiently. In this re-
spect, the phase retrieval methods can be mainly classified into two categories
based either on additional sparsity prior information [10, 12, 18] or addition-
al magnitude-only measurements (including structublack illuminations and
masks [5,7,14], and Short-Time Fourier Transform (STFT) magnitude-square
measurements [4, 21]). The key idea of using additional STFT magnitude-
square measurements is to introduce blackundancy in the magnitude-only mea-
surements by maintaining a substantial overlap between adjacent short-time
windows [21].

These phase retrieval methods have focused on recovering a single source
from its Fourier transform magnitude. However, in certain cases, the problem
of recovering multiple underlying sources from single mixed Fourier transform
magnitudes, called multiple input single output (MISO) phase retrieval, is
ever-present in CCD cameras and photosensitive films [22,33,40], underwater
acoustic signal detection [6,19], and speech enhancement [13,23]. This problem
is ill-posed due to a lack of the phase property and the mixing information.
The existing phase retrieval methods however can not provide a solution to the
problem of recovering multiple underlying sources from single channel mixed
Fourier transform magnitudes. Therefore, it is of great importance to study
the problem of MISO phase retrieval.

Extending the study of Bendory and Eldar [4], we consider a closely-related
problem of recovering the multiple underlying sources from single channel
mixed STFT magnitude-square measurements. In this work, our contribution
is three-fold:
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(1) MISO phase retrieval model: A new model of the MISO phase retrieval
problem is proposed in order to recover multiple underlying sources from single
channel mixed STFT magnitude-square measurements, corrupted by noise.

(2) MISO phase retrieval algorithms: Due to the absence of Fourier phase
information and mixed information, we explore hybrid methods by introduc-
ing additional STFT magnitude-square measurements as well as estimating
the mixing information. For maximal overlap between adjacent windows, the
drop size (L = 1) and sufficiently long window length W , the solution can be
constructed as an improved least square (LS) method coupled with an inde-
pendent component analysis (ICA) algorithm, called LS-ICA. When these con-
ditions are not met, an integrated algorithm called GD-ICA is proposed, which
combines a gradient descent (GD) algorithm by minimizing a non-convex loss
function with an ICA algorithm. According to different conditions, the mixed
signal can be recoveblack either by the LS-ICA algorithm or the GD-ICA algo-
rithm. The residual offeblack by the mixed phaseless STFT measurement and
the recoveblack mixed signal can be used to construct another mixed signal.
Then we use an ICA algorithm to estimate the mixing information and the
source signals from the constructed mixed signals.

(3) Initialization of the GD algorithm: It is shown in [4] that the initial-
ization of the GD algorithm can be equivalently posed as a constrained LS
problem. However, it is prone to over-fitting with less training data, and re-
quires the rank restriction of the regression variable. To address this issue, we
propose to use the principle eigenvector of a designed correlation matrix to
initialize the GD-ICA algorithm that minimizes a non-convex loss function.
The principle eigenvector of the designed correlation matrix can be obtained
by a LS solution with a penalty term. The new loss function may provide
significant benefits in two aspects. First, it prevents over-fitting and improves
generalization performance. Second, it relaxes the rank restriction of regression
variable.

The paper is organized as follows. Section 2 describes the background, i.e.,
the method by Bendory and Eldar [4]. Section 3 formulates a mathematical
model and gives the assumptions for the problem of MISO phase retrieval
from single channel mixed STFT magnitude-square measurement. Section 4
discusses the uniqueness of the MISO phase retrieval problem and presents the
conditions under which it has a solution by combining an improved LS method
with an ICA algorithm. When these conditions are not met, an integrated
algorithm is proposed which couples a GD algorithm by minimizing a non-
convex loss function with an ICA algorithm. This section also explores the
initialization method for the GD-ICA algorithm. Section 5 shows numerical
experimental results. Section 6 concludes the paper and draws potential future
research directions.

Notation: Boldface small and capital letters denote vectors (e.g. x) and
matrices (e.g. X), respectively. The superscripts T, * and † denote the trans-
pose, Hermitian, and Moore-Penrose pseudo-inverse of a matrix, respectively. ◦
means the Hadamard (element-wise) product operator. tr(·) takes the trace of
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(a) (b)

Fig. 1: A shifting example of the sliding window overlapped with the signal
(R = dN/Le = 2) for N = 6,W = 4 and L = 3.

a matrix. The lth circular diagonal element of a matrix is denoted by diag(·,l).
k(·) takes the kurtosis of the argument.

2 Background

Recently, the problem of recovering phase information of an underlying signal
from the phaseless STFT measurement has been studied in [4], as discussed
next.

The STFT X of a one-dimensional (1D) signal is defined as the Fourier
transform of the signal x ∈ CN multiplied by a real sliding window g of length
2 ≤W ≤ N .

X(τ, k) =

N−1∑
n=0

x(n)g(τL− n)e−2jπkn/N , (1)

for τ = 0, . . . , R−1, k = 0, . . . , N−1, where L depicts the maximal overlapping
between adjacent windows, R = dN/Le denotes the number of short-time
windows consideblack, and d e rounds the argument to the smallest integer
that is not less than the argument.

Fig. 1 shows an example gτL = {g(τL−n)}N−1n=0 and applying it to a signal
by shifting the sliding window g by τL time units. x and g are zero-padded
over the boundaries of (1). The τth row of X corresponds to the N -point DFT
of x ◦ gτL.

Let Z be an N × R measurement matrix corresponding to the STFT
magnitude-square of the underlying signal x.

Z = |X|2. (2)

The purpose of the algorithms in [4] is to estimate x from Z.
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The key idea is to introduce blackundancy in the magnitude-only mea-
surements by maintaining a substantial overlap between adjacent short-time
windows [7].

(1) For sufficiently long window length, the solution can be constructed as
a least-squares (LS) method.

(2) When the window length is not long enough, a gradient descent (GD)
algorithm is used to solve the phase retrieval problem.

Experiments show that the algorithms in [4] can exactly recover x from Z
under certain conditions.

In order to simplify the quadratic system of equations and reveal the un-
derlying structure, the problem of STFT phase retrieval can be equivalently
stated in terms of the short-time autocorrelation. The algorithms in [4] begin
by taking the DFT of the phaseless STFT measurement (2), as follows

Y (τ, l) =
1

N

N−1∑
k=0

Z(τ, k)e−2jπkl/N

=

N−1∑
n=0

x(n)x∗(n+ l)g(τL− n)g(τL− n− l), (3)

where Y (τ, l) is equal to zero for all τ when W ≤ l ≤ (N −W ) and can be
interpreted as a “W bandlimited” function. The DFT is normalized by 1/N .
For fixed τ , Y can be seen as the autocorrelation of x ◦ gτL [4]. Note that the
τth row of Z and the τth row of Y are Fourier pairs. Hence, for a particular
τ , if Z(τ, l) for 0 ≤ l ≤ N − 1 is available, then Y (τ, l) for 0 ≤ l ≤ N − 1 can
be calculated by taking an inverse Fourier transform [21].

Theorem 2.1: Z(τ, k) for 0 ≤ k ≤ 2W − 2 is sufficient to calculate Y (τ, l)
for 0 ≤ l ≤ N − 1.

(1) For W ≥ d(N + 1)/2e and L = 1, the problem of recovering x from the
measurement Z can therefore be equivalently posed as a constrained LS loss
function derived from (3). With the quadratic constraint, (3) is equivalent to
a non-convex problem.

min
x∈CN

W−1∑
l=−(W−1)

‖yl −Gldiag(X, l)‖22,

subject to X = xx∗, (4)

where yl = {Y (τ, l)}R−1τ=0 , the (τ, n)th entry of the matrix Gl ∈ RR×N is given
by g(τL− n)g(τL− n− l), P−l = PTl , and (Plx)(n) = x(n+ l). Then the first
column of Gl can be given by the non-vanishing matrix g◦ (P−lg), where g =
{g(n)}N−1n=0 . Gl as a circulant matrix can be factoblack as Gl = F∗ΣlF, where
F is the DFT matrix and Σl is a diagonal matrix (as in [4]). For sufficiently
long window length, [4] shows that the LS algorithm is effective for recovering
x from Z.
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Theorem 2.2: Let L = 1. Suppose that x is non-vanishing and the DFT of
g ◦ (P−lg) is non-vanishing for l = 0, 1. Then Z determines x uniquely (up to
a global phase).

Theorem 2.3: Let L = 1. Suppose that g is an admissible window (rect-
angular window) of length W ≥ dN + 1/2e. The DFT of g ◦ (P−lg) is non-
vanishing for l = −(W − 1), . . . ,W − 1 and Gl is invertible. Then (4) recovers
any complex signal uniquely (up to a global phase) and efficiently.

(2) In some cases, the window is shorter than or equal to dN/2e, (4) does
not have a similar LS solution. In these cases, a GD algorithm is used to
recover the signal by minimizing a non-convex loss function. In order to ini-
tialize the GD algorithm, the same LS-based algorithm is used. However, for
l = W, . . . , (N −W ), diag(X, l) can not be estimated as the elements in the
matrices Gl are zero. It was proved in [4] that the principle eigenvector of
the approximation matrix X0 can be a good estimate of x with appropriate
normalization.

For 2 ≤ W ≤ dN/2e, let DτL ∈ RN×N be a diagonal matrix composed of
the entries of gτL, a non-convex loss function is formed from (3) for recovering
x from Z [4].

f(x) =
1

2

R−1∑
τ=0

W−1∑
l=−(W−1)

(x∗Hτ,lx− Y (τ, l))2, (5)

where Hτ,l = P−lDτLDτL−l, x
∗Hτ,lx = tr(XHτ,l).

A GD algorithm is adopted to recover x by minimizing (5). If g is not long
enough, [4] indicates that the GD algorithm can recover x from Z effectively.

Loss function for initialization: In the GD algorithm, the geometry of the
loss function for the initialization has heavy effects on the properties of the
algorithm. In [4], (4) is used to determine the initialization.

Theorem 2.4: Let L = 1. Suppose that x ∈ CN
1/
√
N

and g is an admissible

window of length W ≥ 2. For l = 0, 1, . . . ,W − 1, X0 is defined as a matrix
obeying

diag(X0, l) =

{
G−1l yl, l = 0, . . . ,W − 1,

0, otherwise,

where yl, Gl are defined as in (4).

If L = 1, the initialization x0 can be determined by (4) directly.

In the case of L > 1, yl = {Y (τ, l)}R−1τ=0 has some missing entries. The
up-sampling version ỹl can be obtained by expansion and interpolation.

Theorem 2.5: Let g̃ = {g[(−n)modN ]}N−1n=0 . Suppose that g̃ ∈ RN is an
ideal low-pass filter with bandwidth R. y = Gx, where G is a circulant matrix
whose first column is g̃. Let yL = {YL(τ, l)}R−1n=0 be a down-sampled version.
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YL(n, l) =

{
YL(τ, l), n = τL,

0, otherwise,

Let ŷL = {YL(n, l)}N−1n=0 for fixed l,

ỹ = (F∗pFp)ŷL,

where Fp is a partial Fourier matrix consisting of the first R rows of the DFT
matrix F defined as in (4).

3 Mathematical Model and Assumptions

Consider a collaborative estimation task that is induced by multi-source phase
retrieval from single channel mixed phaseless STFT measurement in a noisy
environment. We present a mathematical model and the assumptions for this
collaborative estimation task in this section.

3.1 Model for the MISO phase retrieval problem

The multiple underlying sources are S = [s1, s2, . . . , sM ]T ∈ CM×N . A linear
mixture of multiple underlying sources is defined as x = aS, where x ∈ CN is
the mixture and the mixing vector a = [a1, a2, . . . , aM ] ∈ RM [2, 30,35–37].

The STFT X ∈ CN of the mixed signal x can be defined as

X(τ, k) =

N−1∑
n=0

x(n)g(τL− n)e−2jπkn/N ,

where g, τ, k, R and L are interpreted in (1).

Let Z be a R × N measurement corresponding to the STFT magnitude-
square |X|2 of the mixed signal x corrupted by noise.

Z = |X|2 + B, (6)

where B is a random R × N matrix which represents noise, following the
standard normal distribution with zero mean and unit variance.

The model of MISO phase retrieval problem is illustrated in Fig. 2. The aim
is to recover the underlying sources S from the phaseless STFT measurement
Z, corrupted by noise B.
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Fig. 2: Model for MISO phase retrieval.

3.2 Assumptions for MISO phase retrieval

To address the MISO phase retrieval problem, two assumptions are utilized
for constructing the MISO phase retrieval model:

(i) The mixed signal x is a linear mixture of the multiple underlying source
signals S multiplied by the mixing matrix A.

(ii) The multiple underlying sources S are as independent as possible of
each other.

4 MISO Phase Retrieval Algorithms

In this section, we discuss the conditions for solving the MISO phase retrieval
problem and under which we provide a three-step solution. The first step is
to recover the mixed signal x from its mixed phaseless STFT measurement Z.
The second step is to construct multiple mixed signals X = [x1,x2, . . . ,xM ]T

by the residuals provided from the multiple constructed mixed phaseless STFT
measurements K = [Z0,Z1, . . . ,ZM−1]T . The last step is to recover multiple

underlying sources Ŝ from the constructed mixed signals X.
Fig. 3 illustrates the overview of the solution. Let Z0 = Z, we take i = 1

and M = 2 as an example. The first mixed signal x1 is recoveblack from the
mixed phaseless STFT measurement Z0. The residual Z1 offeblack by Z0 and
x1 can be used to construct another mixed signal x2 when its magnitude is
compensated by C1 which is defined as in (11) shown in the next section. Until
all the mixed signals X = [x1,x2]T have been constructed, we can recover the

multiple underlying sources Ŝ = [ŝ1, ŝ2]T and estimate the mixing matrix A.
For L = 1 and sufficiently long window length W , the solution can be con-

structed as an improved LS method coupled with an ICA algorithm, called LS-
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Fig. 3: Overview of the solution for the MISO phase retrieval problem. For
i = 1, Z0 is the single-channel mixed phaseless STFT measurement. The first
mixed signal x1 and its phase are recoveblack from Z0. The residual Z1 is
obtained by Z0 and x1. Then another mixed signal x2 and its phase can be
constructed from Z1. From the constructed mixed signals X = [x1,x2]T , the

multiple underlying sources Ŝ = [ŝ1, ŝ2]T can be estimated by ICA.

ICA. When these conditions are not met, an integrated algorithm is proposed
which combines a GD algorithm by minimizing a non-convex loss function
with an ICA algorithm.

4.1 LS-ICA algorithm

The fundamental questions of MISO phase retrieval are whether the multiple
mixed signals X can be constructed from the quadratic measurement operator
of Z and whether the underlying signals S can be determined uniquely from
X. Based on the study of Eldar et al. [4], we propose an LS-ICA algorithm
which is effective to solve this problem for for the maximal overlapping between
adjacent windows L = 1 and sufficiently long window length W .

(1) Recovery of the phases of the mixed signal x
For the purpose of constructing multiple mixed phaseless STFT measure-

ments, we first recover the mixed signal x. To simplify the quadratic system
of equations and obtain requiblack correlation data [26], we take DFT to the
phaseless STFT measurement Z. Let Z0 = Z, x1 = x, for i = 1, · · · ,M ,

Yi−1(τ, l) =
1

N

N−1∑
k=0

Zi−1(τ, k)e−2jπkl/N

=

N−1∑
n=0

xi(n)x∗i (n+ l)g(τL− n)g(τL− n− l), (7)
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where Yi−1(τ, l) can be expressed as a band-limited function for W ≤ l ≤
(N −W ). For fixed τ , Yi−1 can be seen as the autocorrelation of xi ◦ gτL,
where gτL is defined as in (1).

For W ≥ d(N + 1)/2e and L = 1, it was shown in [4] that (3) can be
equivalently posed as a constrained LS problem as (4). However, this method
is prone to over-fitting with less training data and requires the rank restriction
for Gl. To address this issue, a penalty term is introduced as follows [17],

min
xi∈CN

a∑
l=−a

‖y(i−1)l −Gldiag(Fi, l)‖22 + λ‖diag(Fi, l)‖22,

subject to Fi = xix
∗
i , (8)

where a = W −1, λ is the regularization coefficient, y(i−1)l and Gl are defined
as in (4). The modification of (4) may provide significant benefits in two as-
pects. First, it prevents over-fitting and improves generalization performance.
Second, it relaxes the rank restriction of Gl.

A matrix Fi is constructed from (8) as follows [17]

diag(Fi, l) =

{
(GT

l Gl + λI)−1GT
l y(i−1)l, l = −a, . . . , a,

0, otherwise,
(9)

where xi is a principle eigenvector of Fi.
From (7) to (9), xi can be recoveblack from Zi−1. In order to remove

the magnitude effect of the mixing matrix, the recoveblack mixed signal is
normalized as xi.

(2) Construction of multiple mixed signals X
In order to construct multiple mixed signals, we consider to construct mul-

tiple mixed phaseless STFT measurements. For i = 1, · · · ,M , we use the
residual to construct the ith phaseless STFT magnitude-square measurement,
which is defined as

Zi = |Ci[
√
Zi−1 −Xi]|2, (10)

where
Ci = ‖

√
Zi−1‖2/‖

√
Zi−1 −Xi‖2, (11)

represents the magnitude compensation and Xi means the STFT of xi. For
each Zi−1, the above procedures from (7) to (9) are repeated until all the
mixed signals have been recoveblack from the constructed phaseless STFT
measurements K = [Z0, . . . ,ZM−1]T and normalized as X = [x1, . . . ,xM ]T .

(3) Recovery of multiple underlying sources Ŝ
All the normalized mixed signals X are used as the input for the recovery

of the underlying sources. On the basis of the independent component analysis
idea [15,16,20], we use the Complex Maximization of Nongaussianity (CMN)
algorithm presented in [28,29], which is an effective algorithm for both circular
and non-circular sources using complex functions.

The whitening mixed signal x̃i = Uxi are transformed by a whitening
matrix U [28]. Here E{x̃ix̃∗i } = I.
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The use of whitening allows us to search for an orthogonal matrix W as
E{Wx̃i(Wx̃i)

∗} = WE{x̃ix̃∗i }W
∗ = I.

Each source sk is estimated by finding a vector w such that

sik = w∗kx̃i, (12)

where wk is a column of W∗. Constraining the source to E{siks∗ik} = 1, the
weights to ‖w‖2 = 1, and W unitary due to the whitening transform [29].

The optimal weights wopt are determined by maximizing the cost under
the unit norm constraint where x̃i has been whitened.

wopt = arg max
‖w‖2=1

E{|G(w∗x̃i)|2}. (13)

where the nonlinearity G: C 7→ C. A number of possibilities exist for G in (13),
e.g., G(·) = acosh(·) or G(·) = sin(·).

To calculate the optimal weights, a gradient optimization algorithm is used,
followed by a normalization step.

w← w + µν
∂J(si)

∂w
,

w← w

‖w‖
, (14)

where J(si) = E{|G(si)|2}, si = w∗x̃i, µ is the learning rate, and ν ∈ {−1, 1}
is the parameter that determines whether we are maximizing or minimizing
the cost function.

Theorem 4.1: Let J = J(si). Suppose w = wR + jwI , and wR and wI are
two real variables. The partial derivative of the cost function J with respect to
the conjugate of the weight vector w, referblack to as the conjugate gradient,
is obtained as

∂J

∂w
=

∂J

∂wR
+ j

∂J

∂wI
= E{x̃iG∗(si)g(si)}, (15)

where g is the derivation of G.

Proof: See Appendix A.

After each source is estimated, the vectors w are orthogonalized to prevent
multiple solutions from converging to the same maximum since W is unitary
due to the prewhitening step.

The mixed matrix is estimated as A = U−1W∗. We then recover the
underlying sources by S = A−1X̃. Finally, the recoveblack underlying sources
are normalized by the `2 norm of S, denoted as Ŝ = [ŝ1, ŝ2, . . . , ŝM ]T . The
proposed algorithm is summarized in Algorithm 1.



12 Yina Guo et al.

Algorithm 1 LS-ICA algorithm

Input: The phaseless STFT measurements Z as given in (6).

Output: recovery of X, estimation of Ŝ.
1. DFT Computation. Let Z0 = Z, for i = 1, · · · ,M . Compute DFT Yi−1 of the (i−1)th
STFT Zi−1 as shown in (7).
2. Recovery of xi. Construct a matrix Fi.

diag(Fi, l) =

{
(GT

l Gl + λI)−1GT
l y(i−1)l, l = −a, . . . , a,

0, otherwise,
where a, Gl, y(i−1)l and λ are defined as in (8) and (9). Find the recoveblack mixed
signal by eigenvector decomposition of Fi. The recoveblack mixed signal is normalized as
xi.
3. Construction. Construct the ith phaseless STFT measurement that is defined as
Zi = |Ci[

√
Zi−1 −Xi]|2,

where Ci = ‖
√

Zi−1‖2/‖
√

Zi−1 −Xi‖2 represents the magnitude compensation and X̂i

means the STFT of xi. Repeat step 1 to step 3, we construct multiple phaseless STFT
measurements K = [Z0, . . . ,ZM−1]T .
4. Recovery of X. For each Zi−1 (i = 1, . . . ,M), the above procedures from step 1 to
step 2 are repeated until all the constructed mixed signals X = [x1, . . . ,xM ]T have been
recoveblack.
5. Whitening. Estimate a whitening matrix U and the whitening mixed signal x̃i = Uxi.
6. Orthogonalization. Search for an orthogonal matrix W. The optimal weights are deter-
mined by wopt = arg max

‖w‖2=1
E{|G(w∗x̃i)|2}.

7. Normalization. To calculate the optimal weights, a gradient optimization algorithm is
used and followed by a normalization step as in (14).

8. Estimation of Ŝ. Estimate the mixing matrix A = U−1W∗ and recover the underlying
sources by S = A−1X̃. The recoveblack underlying sources are normalized by their `2
norms as Ŝ = [ŝ1, ŝ2, . . . , ŝM ]T .

4.2 GD-ICA algorithm

When the conditions for the LS-ICA algorithm are not met (the maximal
overlapping between adjacent windows L > 1 and not long enough window
length W ), we present a GD-ICA algorithm for solving MISO phase retrieval
problem.

(1) Recovery of the phases of the mixed signal x

For i = 1, let Z0 = Z and x1 = x, DFT is used in the phaseless STFT
measurement Zi−1 to obtain Yi−1 which is shown in (7).

For L ≤ W ≤ dN/2e, let DτL ∈ RN×N be a diagonal matrix composed of
the entries of gτL, the problem of recovering xi from the measurement Zi−1
can therefore be equivalently posed as a non-convex loss function derived from

f(xi) =
1

2

R−1∑
τ=0

a∑
l=−a

(x∗iHτ,lxi − Yi−1(τ, l))2, (16)

where Hτ,l and x∗iHτ,lxi are defined as in (5), and a is defined in (8).

A GD algorithm is adopted to recover the ith mixed signal by minimizing
(16). The kth iteration is
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xik = xi(k−1) − µ∇f(xi(k−1)),

∇f(b) =

R−1∑
τ=0

a∑
l=−a

(bTHτ,lb− Yi−1(τ, l))[(Hτ,l + HT
τ,l)b], (17)

where b = xi(k−1), µ is the gradient step size, and R is defined as in (1).
According to the above procedures, xi is recoveblack from Zi−1.
(2) Construction of multiple mixed signals X
This step is similar to the LS-ICA algorithm. In this step, we construct

multiple mixed phaseless STFT measurements K by the residuals defined as
in (10). The above procedures are repeated until all the constructed mixed
signals are recoveblack from K and normalized as X = [x1, . . . ,xM ]T .

(3) Recovery of multiple underlying sources S
The CMN algorithm for complex-valued signals is used to recover the un-

derlying sources from the normalized mixed signals X. The recoveblack un-
derlying sources are normalized as Ŝ = [ŝ1, ŝ2, . . . , ŝM ]T to remove the impact
of magnitude of the mixing matrix.

Improved loss function for initialization: For L = 1, the study of Eldar
et al. [4] shows that the geometry of the loss function for the initialization
heavily affects the properties of the GD algorithm and the initialization x0

can be determined by a simple LS solution. However, it is prone to over-
fitting with less training data and requires the rank restriction of Gl. Thus we
construct a matrix Fi0 from (8) as follows

diag(Fi0, l) =

{
(GT

l Gl + λI)−1GT
l y(i−1)l, l = −a, . . . , a,

0, otherwise,

subject to Fi0 = xi0x
∗
i0, (18)

where Gl and y(i−1)l are represented in (4), a is defined as in (8), and xi0 is
a principle eigenvector of Fi0. Then the initialization xi0 of the proposed GD
algorithm can be constructed by Fi0.

In the case that L > 1, we need to expand y(i−1)l = {Yi−1(τ, l)}R−1τ=0 to an
up-sampled version ỹ(i−1)l by expansion and interpolation as

Yi−1(n, l) =

{
Yi−1(τ, l), n = τL,

0, otherwise,

Let ŷ(i−1)l = {Yi−1(n, l)}N−1n=0 for fixed l,

ỹ(i−1)l = (F∗pFp)ŷ(i−1)l, (19)

where Fp is a partial Fourier matrix consisting of the first R rows of the DFT
matrix F defined as in (4). Then the initialization xi0 can be obtained by (18).

The proposed algorithm is summarized in Algorithm 2.
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Algorithm 2 GD-ICA algorithm

Input: The phaseless STFT measurements Z as given in (6).

Output: Initialization of x0, recovery of X, estimation of Ŝ.
1. DFT Computation. Let Z0 = Z, for i = 1, · · · ,M , compute DFT Yi−1 of the (i− 1)th
STFT Zi−1 as shown in (7).
2. Up-sampling.

if L = 1, omit this step,
else if L > 1, the down-sampled version y(i−1)l is expanded and interpolated to an

up-sampled version ỹ(i−1)l by (19).
3. Initialization. Construct an initial matrix Fi0.

diag(Fi0, l) =

{
(GT

l Gl + λI)−1GT
l y(i−1)l, l = −a, . . . , a,

0, otherwise,
subject to Fi0 = xi0x

∗
i0,

where a, Gl, y(i−1)l and λ are defined as in (8). Find xi0 by eigenvector decomposition
of Fi0.
4. Recovery of xi. Recover the ith mixed signal xi by a GD algorithm. The kth iteration
is
xik = xi(k−1) − µ∇f(xi(k−1)),

∇f(z) =

R−1∑
τ=0

a∑
l=−a

(zTHτ,lz− Yi−1(τ, l))[(Hτ,l + HT
τ,l)z],

where z = xi(k−1), µ is the gradient step size, and R is defined as in (1). The recoveblack
mixed signal is normalized as xi.
5. Construction. Construct the ith phaseless STFT measurement that is defined as
Zi = |Ci[

√
Zi−1 −Xi]|2,

where Ci, and Xi are defined as in (10). Repeat step 1 to step 5, we construct multiple
phaseless STFT measurements K = [Z0, . . . ,ZM−1]T .
6. Recovery of X. For each Zi−1 (i = 1, . . . ,M), the above procedures are repeated until
all constructed mixed signals X = [x1, . . . ,xM ]T are recoveblack.

7. Estimation of Ŝ. Recover the underlying sources Ŝ = [ŝ1, ŝ2, . . . , ŝM ]T by running step
5 to step 8 in Algorithm 1.

5 Numerical Experiments

In this section, we carry out numerical simulations on both synthetic and real
source signals to demonstrate how the performance of the proposed algorithms
depends on the length of the window and the maximal overlapping between
adjacent windows, and how the algorithm is affected by noise for solving the
problem of MISO phase retrieval.

The following experiments show that the LS-ICA algorithm estimates the
phase of multiple sources and the mixing information if the window is suffi-
ciently long and the maximal overlapping between adjacent windows (L = 1).
When the window is shorter than or equal to dN/2e, (8) does not have an
improved LS solution. In this situation, the phase of multiple sources and the
mixing information are recoveblack by the GD-ICA algorithm. In order to
initialize the GD algorithm, we use a LS algorithm with a penalty term as
described in section 4.

The relative root mean squablack error (RRMSE) and signal to noise ratio
(SNR) are used to evaluate the performance of the proposed algorithms. We
consider two-source scenario. For i = 1, 2, RRMSEi is defined as follows
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(a) Recovery of the mixed signal x1 (b) Recovery of the constructed mixed
signal x2

(c) RRMSE and the normalized objec-
tive function values of the recoveblack
mixed signal x1

(d) RRMSE and the normalized objec-
tive function values of the recoveblack
constructed mixed signal x2

Fig. 4: Recovery of the mixed signals (length N = 23) with a rectangular
window in a noisy environment of SNR = 25dB.

(a) Recovery of the underlying source
ŝ1

(b) Recovery of the underlying source
ŝ2

Fig. 5: Recovery of the underlying sources (length N = 23) with a rectangular
window in a noisy environment of SNR = 25dB.

RRMSEi =
RMS(si − ŝi)

RMS(si)
.
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where ŝi is the recoveblack underlying source and si is the original source
signal.

5.1 MISO phase retrieval from a synthetic phaseless STFT measurement

The underlying sources are randomly drawn and statistically independent. The
mixed measurement is corrupted by additive Gaussian noise with zero mean
and unit variance and the level of noise from 5dB to 25dB.

In the first set of simulations, we evaluate the estimation performance of
the proposed algorithm described in Algorithm 2. We choose the maximal
overlapping between adjacent windows (L = 2), the window length (W = 10),
the signal length (N = 23), the noise at SNR = 25dB, and the number of
short-time windows is denoted by R = dN/Le. The gradient step size µ is
set to be 0.005, the regularization coefficient λ is set to be 0.01, the maximal
number of iterations for stopping Algorithm 2 is 3000. As shown in Fig. 4,
the final RRMSEs of the recoveblack mixed signals X = [x1,x2]T are less
than 0.15. Fig. 5 shows that the estimated underlying signals are similar to
the source signals. The final RRMSEs of recoveblack source signals ŝ1 and ŝ2
are 0.1203 and 0.1022 which demonstrates the effectiveness of the proposed
algorithm in recovering phases of multiple underlying signals.

The second experiment is to evaluate the performance of the proposed algo-
rithm for the signal length (N = 43) in accordance with maximal overlapping
between adjacent windows L. We choose the window length (W = 10), the
noise at SNR = 25dB, and the number of short-time windows is denoted by
R = dN/Le. Fig. 6 illustrates the average final RRMSE for 45 experiments of
the recoveblack mixed signals X = [x1,x2]T and the recoveblack underlying

sources Ŝ = [ŝ1, ŝ2]T for different L. For low values of L = 1, 2, the RRMSEs
of X and S are relatively low. It shows clearly that the underlying sources
can be recoveblack when the RRMSEs are smaller than 0.1. For high values
of L = 3, 4, 5, the RRMSEs of X are less than the RRMSEs of Ŝ and the
values are above 0.4. These experimental results indicate that the interpola-
tion is effective in up-sampling measurements especially for low values of L.
The proposed algorithm has better recovery performance in Ŝ than X for low
values of L.

The third experiment is conducted to estimate the performance of the
proposed algorithm with respect to different SNRs for the signal length (N =
43). We choose the maximal overlapping between adjacent windows (L = 2),
the window length (W = 10), and the number of short-time windows is denoted
by R = dN/Le. Fig. 7 demonstrates the average RRMSE for 45 experiments
of the recoveblack mixed signals X = [x1,x2]T and the recoveblack underlying

sources Ŝ = [ŝ1, ŝ2]T for different SNR. With the increase in SNR, the RRMSEs

of X decrease slightly whereas the RRMSEs of Ŝ drop rapidly. For SNR =
20dB, 25dB, the RRMSEs of Ŝ are relatively low and less than 0.15. The results
mean that the proposed algorithm has better anti-noise performance in Ŝ than
X especially for high values of SNR.
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Fig. 6: The average final RRMSE for 45 experiments of the recoveblack mixed
signals X and the recoveblack underlying sources Ŝ for different L.

Fig. 7: The average final RRMSE for 45 experiments of the recoveblack mixed
signals X and the recoveblack underlying sources Ŝ for different SNR.

The fourth experiment aims to evaluate the recovery performance of the
proposed algorithm for the signal length (N = 53), the maximal overlapping
between adjacent windows (L = 1) and the noise (SNR = 25dB) in accor-
dance with the window length W . Fig. 8 and Fig. 9 show the estimation per-
formance of the GD-ICA algorithm and the LS-ICA algorithm, respectively.
Fig. 8 demonstrates the average final RRMSE for 40 experiments of the re-
coveblack mixed signals X = [x1,x2]T and the recoveblack underlying sources

Ŝ = [ŝ1, ŝ2]T , and the RRMSEs of X and Ŝ are relative low and less than 0.2.

For W > 27, the RRMSEs of X and Ŝ increase rapidly. In Fig. 9, with the
increasing of W , the RRMSEs of X and Ŝ decrease sharply. For high values
of W > 27, the RRMSEs of X and Ŝ are less than 0.3. These experiments
demonstrate that the LS-ICA algorithm is effective in recovering the phases of
multiple underlying signals when W is long enough. When W is not sufficient-
ly long, the GD-ICA algorithm can recover the phases of multiple underlying
signals effectively.
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Fig. 8: GD-ICA algorithm: The average final RRMSE for 40 experiments of
the recoveblack mixed signals X and the recoveblack underlying sources Ŝ for
different W .

Fig. 9: LS-ICA algorithm: The average final RRMSE for 40 experiments of
the recoveblack mixed signals X and the recoveblack underlying sources Ŝ for
different W .

5.2 MISO phase retrieval for fetal ECG detection

The maternal cutaneous electrode recordings normally contain fetal ECG sig-
nals (FECG) and maternal ECG signals (MECG). In this case, the inhibition
of MECG and simultaneously detection of FECG are often expected [25]. How-
ever, sometimes the phases of the ECG recordings may be corrupted by noises,
or the phaseless ECG recordings need to be transferblack for information hid-
ing purposes.

Taking the fetal ECG detection as an example, the extraction of a FECG
and a MECG from the abdominal mixed phaseless STFT measurement is cho-
sen. The ECG data was obtained from MIT-BIH (http://www.physionet.org/cgi-
bin/atm/ATM). We choose the signal length (N = 1000), the maximal over-
lapping between adjacent windows (L = 3), the window length (W = 10), the
noise at SNR = 25dB, and the number of short-time windows is denoted by
R = dN/Le.
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(a) Recovery of the underlying FECG signal ŝ1 (b) Recovery of the underlying MECG
signal ŝ2

(c) The first 43 samples of the re-
coveblack FECG signal ŝ1 and the un-
derlying FECG signal s1

(d) The first 43 samples of the re-
coveblack MECG signal ŝ2 and the un-
derlying MECG signal s2

Fig. 10: Recovery of the underlying signals (length N = 1000) with a rectan-
gular window in a noisy environment of SNR = 25dB.

In [4], although the phase retrieval of a short underlying signal (N ≤ 50)
from the phaseless STFT measurement has been studied, recovering phase
information of a long underlying signal (N > 50) from the phaseless STFT
measurement is limited by high errors. In order to improve the recovery preci-
sion of the relatively long signals, we transform the long signals to the matrix
constructed by multiple short signals. The gradient step size µ is set to be
0.005, the regularization coefficient λ is set to be 0.01, the maximal number
of iterations for stopping the LS-ICA algorithm, the GD-ICA algorithm and
the STFTMPR algorithm are 10000, 10000 and 20000 respectively. Table 1,
2 and 3 show clearly that the GD-ICA algorithm and the LS-ICA algorithm
outperform the STFTMPR algorithm proposed in [4] with the maximal over-
lapping between adjacent windows (L = 3), the noise at SNR = 25dB, and
the window length (W = 10) in accordance with the signal length N .

As shown in Fig. 10, the estimated FECG signal ŝ1 and the estimated
MECG signal ŝ2 are similar to the underlying FECG signal s1 and the un-
derlying MECG signal s2. The final RRMSEs of the recoveblack FECG signal
ŝ1 and the recoveblack MECG signal ŝ2 are 0.2548 and 0.1651 which demon-
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Table 1: The run time of LS-ICA algorithm, GD-ICA algorithm and STFTM-
PR algorithm in accordance with the signal length N .

Signal length N Run time/s
LS-ICA GD-ICA STFTMPR

23 1.9503 1.987 2.0016
100 3.8016 3.2145 16.7637
150 4.9221 4.0657 71.1252
200 8.4453 8.1133 86.9734
350 10.8176 10.6347 107.1148
500 29.9661 27.7732 408.3776
650 29.6387 28.3128 557.4145
800 41.9241 39.5589 963.4996
1000 43.0489 41.9765 1685.3366

Table 2: The RRMSE of LS-ICA algorithm, GD-ICA algorithm and STFTM-
PR algorithm in accordance with the signal length N .

Signal length N RRMSE
LS-ICA GD-ICA STFTMPR

23 0.1171 0.118 0.1107
100 0.1078 0.1012 0.1098
150 0.112 0.0998 0.1764
200 0.1207 0.1087 0.1953
350 0.1277 0.1209 0.2999
500 0.151 0.149 0.3095
650 0.1486 0.1301 0.3318
800 0.1168 0.1175 0.4185
1000 0.1455 0.1406 0.4378

Table 3: The iteration number of LS-ICA algorithm, GD-ICA algorithm and
STFTMPR algorithm in accordance with the signal length N .

Signal length N Iteration number
LS-ICA GD-ICA STFTMPR

23 524 515 403
100 727 679 1570
150 999 847 3284
200 1681 1530 3539
350 2075 1911 3463
500 6112 5398 7736
650 5824 6023 9645
800 6873 6544 11967
1000 8207 8021 18408
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strates the efficiency of the proposed algorithm in recovering the phases of real
FECG and MECG signals.

6 Conclusion

The problem of multi-source phase retrieval from single channel mixed phase-
less STFT measurement has been investigated in this paper.

We have formed a new model for the problem of multi-source phase retrieval
from a mixed phaseless STFT measurement.

For maximal overlap between adjacent windows (L = 1) and sufficiently
long window length W , we propose an LS-ICA algorithm. When the window
length W is not long enough, a GD-ICA algorithm is presented as a solution
to this problem.

We have also shown the significance of the initialization method to the
GD-ICA algorithm and demonstrated that the initialization method can be
constructed by an improved LS loss function.

Numerical experiments show that the proposed algorithms perform well in
estimating the phase of multiple sources and the mixing information. In terms
of future research directions, it is interesting to investigate how to incorporate
conditions such as window length, additional magnitude-only measurement,
mixed model (e.g. linear mixed model, nonlinear mixed model), or maximal
overlapping between adjacent windows into the MISO phase retrieval algo-
rithms. It would also be interesting to extend the consideblack model and
proposed methods to other scenarios such as for single input single output
(SISO) system and multiple input multiple output (MIMO) system.
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Appendix

A. Proof of Theorem 4.1

The derivative of the function J = J(si) is calculated based on real-valued
functions because J is not analytic. Let si = w∗x̃i, G(si) is expended in terms
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of two real-valued functions u(y) and v(y).

J = |G(si)|2 = |G(w∗x̃i)|2 = |u(w∗x̃i) + jv(w∗x̃i)|2

≡ u2(a, b) + v2(a, b)

where a, b are the real part and the imaginary part of w∗x̃i respectively. The
partial derivative of J with respect to the real weight wRi is obtained by use
of the chain rule and results in

∂J

∂wRi
= 2u(

∂u(a, b) ∂a

∂a ∂wRi
+
∂u(a, b) ∂b

∂b ∂wRi
) + 2v(

∂u(a, b) ∂a

∂a ∂wRi
+
∂u(a, b) ∂b

∂b ∂wRi
).

The above expression is rearranged as follows

∂J

∂wRi
= 2u(uax̃

R
ij + ubx̃

I
ij) + 2v(vax̃

R
ij + vbx̃

I
ij)

= 2[x̃Iij(uua + vva) + x̃Rij(uub + vvb)].

where ua ≡ ∂u(a,b)
∂a , ub ≡ ∂u(a,b)

∂b , va ≡ ∂v(a,b)
∂a , and vb ≡ ∂v(a,b)

∂b .
The derivative of J with respect to the imaginary weight wIi is calculated

as
∂J

∂wIi
= 2[x̃Iij(uua + vva)− x̃Rij(uub + vvb)].

It is advantageous to utilize complex operators for a more compact nota-
tion. Noticing that

(uua + vva) + j(uub + vvb) = g∗(w∗x̃i)G(w∗x̃i),

where g is the derivative of G. According to the Cauchy-Riemann equations:
gR = ua = vb and gI = va = −ub, the derivative of J with respect to the
complex weight vector w is shown as:

∂J

∂w
= 2(g∗(w∗x̃i)G(w∗x̃i))

∗x̃i = 2x̃iG
∗(w∗x̃i)g(w∗x̃i),

which is equivalent to

∂J(w)

∂w
=

1

2
(
∂J(w)

∂wR
+ j

∂J(w)

∂wI
).
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