Skip to main content
Log in

Multi-step Knowledge-Aided Iterative Conjugate Gradient Algorithms for DOA Estimation

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In this work, we present direction-of-arrival (DoA) estimation algorithms based on the Krylov subspace that effectively exploit prior knowledge of the signals that impinge on a sensor array. The proposed multi-step knowledge-aided iterative conjugate gradient (CG) (MS-KAI-CG) algorithms perform subtraction of the unwanted terms found in the estimated covariance matrix of the sensor data. Furthermore, we develop a version of MS-KAI-CG equipped with forward–backward averaging, called MS-KAI-CG-FB, which is appropriate for scenarios with correlated signals. Unlike current knowledge-aided methods, which take advantage of known DoAs to enhance the estimation of the covariance matrix of the input data, the MS-KAI-CG algorithms take advantage of the knowledge of the structure of the forward–backward smoothed covariance matrix and its disturbance terms. Simulations with both uncorrelated and correlated signals show that the MS-KAI-CG algorithms outperform existing techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A. Barabell, Performance of orthogonal matching pursuit for multiple measurement vectors with noise, in IEEE International Conference on Acoustics, Speech and Signal Processing (April 1983), pp. 336–339

  2. G. Golub, C.V. Loan, Matrix Computations (Johns Hopkins University Press, Baltimore, 1996)

    MATH  Google Scholar 

  3. R. Grover, D. Pados, M. Medley, Subspace direction finding with an auxiliary-vector basis. IEEE Trans. Signal Process. 55(2), 758–763 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. J.L. Jr, T. Rappaport, Smart antennas for Wireless Communications: IS-95 and Third Generation CDMA Applications (Prentice Hall, Upper Saddle River, 1999)

    Google Scholar 

  5. P. Pal, P. Vaidyanathan, A novel approach to array processing with enhanced degrees of freedom. IEEE Trans. Signal Process. 58(8), 4167–4181 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. P. Pal, P. Vaidyanathan, Sparse sensing with co-prime samplers and arrays. IEEE Trans. Signal Process. 59(2), 573–586 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. S. Pillai, B. Kwon, Forward/backward spatial smoothing techniques for coherent signal identification. IEEE Trans. Acoust. Speech Signal Process. 37(1), 8–15 (1989)

    Article  MATH  Google Scholar 

  8. S. Pinto, R. de Lamare, Two-step knowledge-aided iterative ESPRIT algorithm, in IEEE Twenty First ITG Workshop on Smart Antennas (Berlin, March 2017), pp. 1–5

  9. S. Pinto, R. de Lamare, Multi-step knowledge-aided iterative ESPRIT for direction finding, in IEEE 22nd International Conference on Digital Signal Processing (London, August 2017), pp. 1–5

  10. S. Pinto, R. de Lamare, Knowledge-aided parameter estimation based on Conjugate Gradient algorithms, in 35th Brazilian Communications and Signal Processing Symposium (Sao Pedro, SP, Brazil, August 2017), pp. 1–5

  11. S. Pinto, R. de Lamare, Multi-step knowledge-aided iterative Conjugate Gradient for direction finding, in IEEE 22nd ITG Workshop on Smart Antennas (Bochum, March 2018), pp. 1–5

  12. S. Pinto, R. de Lamare, Multi-step knowledge-aided iterative ESPRIT: design and analysis. IEEE Trans. Aerosp. Electron. Syst. 54(5), 2189–2201 (2018b)

    Article  Google Scholar 

  13. L. Qiu, R. de Lamare, M. Zhao, Reduced-rank DOA estimation algorithms based on alternating low-rank decomposition. IEEE Signal Process. Lett. 23(5), 565–569 (2016)

    Article  Google Scholar 

  14. J. Rissanen, Modeling by the shortest data description. Automatica 14(6), 465–471 (1978)

    Article  MATH  Google Scholar 

  15. R. Roy, T. Kailath, Estimation of signal parameter via rotational invariance technique. IEEE Trans. Acoust. Speech Signal Process. 37(7), 984–995 (1989)

    Article  Google Scholar 

  16. S. Schell, W. Gardner, High Resolution Direction Finding—Handbook of Statistics (Elsevier, Amsterdam, 1993)

    Google Scholar 

  17. R. Schmidt, Multiple emitter location and signal parameter estimation. IEEE Trans. Antennas Propag. 34, 276–280 (1986)

    Article  Google Scholar 

  18. H. Semira, H. Belkacemi, S. Marcos, High-resolution source localization algorithm based on the conjugate gradient. EURASIP J. Adv. Signal Process. 2007(2), 12 (2007)

    MathSciNet  MATH  Google Scholar 

  19. M. Shaghaghi, S. Vorobyov, Iterative root-MUSIC algorithm for DOA estimation, in IEEE 5th International Workshop on Computational Advances in Multisensor Adaptive Processing (St. Martin, France, December 2013), pp. 1–4

  20. M. Shaghaghi, S. Vorobyov, Subspace leakage analysis and improved DOA estimation with small sample size. IEEE Trans. Signal Process. 63(12), 3251–3265 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Z. Shi, C. Zhou, Y. Gu, N.A. Goodman, F. Qu, Source estimation using coprime array: a sparse reconstruction perspective. IEEE Sens. J. 17(3), 755–765 (2017)

    Article  Google Scholar 

  22. J. Steinwandt, R. de Lamare, M. Haardt, Knowledge-aided direction finding based on Unitary ESPRIT, in IEEE 45th Asilomar Conference on Signals, Systems and Computers (Pacific Grove, CA, USA, November 2011), pp. 613–617

  23. J. Steinwandt, R. de Lamare, M. Haardt, Beamspace direction finding based on the conjugate gradient algorithm, in 2011 International ITG Workshop on Smart Antennas (Aachen, Germany, February 2011), pp. 1–5

  24. J. Steinwandt, R. de Lamare, M. Haardt, Beamspace direction finding based on the conjugate gradient and the auxiliary vector filtering algorithms. Signal Process. 93(4), 641–651 (2013)

    Article  Google Scholar 

  25. P. Stoica, A. Gershman, Maximum-likelihood DOA estimation by data-supported grid search. IEEE Signal Process. Lett. 6(10), 273–275 (1999)

    Article  Google Scholar 

  26. P. Stoica, A. Nehorai, MUSIC, maximum likelihood, and Cramér–Rao bound. IEEE Trans. Acoust. Speech Signal Process. 37(5), 720–741 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  27. P. Stoica, A. Nehorai, Performance study of conditional and unconditional direction-of-arrival estimation. IEEE Trans. Acoust. Speech Signal Process. 38(10), 1783–1795 (1990)

    Article  MATH  Google Scholar 

  28. P. Stoica, X. Zhu, J. Guerci, On using a priori knowledge in space-time adaptive processing. IEEE Trans. Signal Process. 56(6), 2598–2602 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  29. A. Thakre, M. Haardt, K. Giridhar, Single snapshot spatial smoothing with improved effective array aperture. IEEE Signal Process. Lett. 16(6), 505–508 (2009)

    Article  Google Scholar 

  30. H.V. Trees, Optimum Array Processing. Part IV of Detection, Estimation and Modulation Theory (Wiley, New York, 2002)

    Google Scholar 

  31. L. Wang, R. de Lamare, M. Haardt, Direction finding algorithms based on joint iterative subspace optimization. IEEE Trans. Aerosp. Electron. Syst. 50(4), 2541–2553 (2014)

    Article  Google Scholar 

  32. C. Zhou, Y. Gu, Y. Zhang, Z. Shi, T. Jin, X. Wu, Compressive sensing-based coprime array direction-of-arrival estimation. IET Commun. 11(11), 1719–1724 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvio F. B. Pinto.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pinto, S.F.B., de Lamare, R.C. Multi-step Knowledge-Aided Iterative Conjugate Gradient Algorithms for DOA Estimation. Circuits Syst Signal Process 38, 3841–3859 (2019). https://doi.org/10.1007/s00034-019-01033-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-019-01033-0

Keywords

Navigation