Skip to main content
Log in

Noise Robust Method for Analytically Solvable Chaotic Signal Reconstruction

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

A new chaotic signal reconstruction method for analytically solvable chaotic systems (ASCS) under strong noise condition is proposed in this paper, which solves the problem of unsatisfactory reconstruction performance under strong noise condition. In the proposed method, firstly, binary symbols of ASCS are obtained under strong noise condition by integrating the observed signal over a specific interval of every binary symbol period and comparing integration results with a zero value threshold. Then, the relationship between the original signal and another ASCS is derived analytically based on the obtained binary symbol sequence. According to the derived relationship, the original signal can be reconstructed by the output of another ASCS which is driven by the obtained binary symbol sequence reversed in time. Theoretically, the proposed method can reconstruct signals under strong noise condition with small error since the integration result of additive white Gaussian noise in every integration interval approaches zero. Finally, the proposed method is demonstrated with numerical simulations which show the original chaotic signal can be reconstructed with small error even when the signal-to-noise ratio is \(-30\) dB, and thus the proposed method outperforms conventional methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. C. Bai, H.P. Ren, C. Grebogi, M.S. Baptista, Chaos-based underwater communication with arbitrary transducers and bandwidth. Appl. Sci. 8(2), 162 (2018)

    Article  Google Scholar 

  2. J.P. Bailey, A.N. Beal, R.N. Dean et al., High-frequency reverse-time chaos generation using digital chaotic maps. Electron. Lett. 50(23), 1683–1685 (2014)

    Article  Google Scholar 

  3. J.N. Blakely, D.W. Hahs, N.J. Corron, Communication waveform properties of an exact folded-band chaotic oscillator. Phys. D Nonlinear Phenom. 263(2013), 99–106 (2013)

    Article  MATH  Google Scholar 

  4. A. Buscarino, L. Fortuna, M. Frasca, Experimental robust synchronization of hyperchaotic circuits. Phys. D Nonlinear Phenom. 238(19), 1917–922 (2009)

    Article  MATH  Google Scholar 

  5. T.L. Carroll, Chaotic system for self-synchronizing doppler measurement. Chaos Interdiscip. J. Nonlinear Sci. 15(1), 013109 (2005)

    Article  Google Scholar 

  6. T.L. Carroll, Communication with unstable basis functions. Chaos Solitons Fractals 104(2017), 766–771 (2017)

    Article  MATH  Google Scholar 

  7. T.L. Carroll, Noise-resistant chaotic synchronization. Phys. Rev. E 64(1), 015201 (2001)

    Article  Google Scholar 

  8. N.J. Corron, J.N. Blakely, A matched filter for communicating with chaos. AIP Conf. Proc. Am. Inst. Phys. 1339, 25 (2010)

    MATH  Google Scholar 

  9. N.J. Corron, J.N. Blakely, Chaos in optimal communication waveforms. Proc. R. Soc. A. 471(2180), 20150222 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. N.J. Corron, J.N. Blakely, Exact folded-band chaotic oscillator. Chaos Interdiscip. J. Nonlinear Sci. 22(2), 023113 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. N.J. Corron, J.N. Blakely, M.T. Stahl, A matched filter for chaos. Chaos Interdiscip. J. Nonlinear Sci. 20(2), 023123 (2010)

    Article  MATH  Google Scholar 

  12. N.J. Corron, M.T. Stahl, C.R. Harrison, J.N. Blakely, Acoustic detection and ranging using solvable chaos. Chaos Interdiscip. J. Nonlinear Sci. 23(2), 023119 (2013)

    Article  MATH  Google Scholar 

  13. N.J. Corron, R.M. Cooper, J.N. Blakely, Analytically solvable chaotic oscillator based on a first-order filter. Chaos: An Interdisciplinary J. Nonlinear Sci. 26(2), 023104 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. N.J. Corron, S.T. Hayes, S.D. Pethel, J.N. Blakely, Chaos without nonlinear dynamics. Phys. Rev. Lett. 97(2), 024101 (2006)

    Article  Google Scholar 

  15. J. Hu, J. Duan, Z. Chen, H. Li, J. Xie, H. Chen, Detecting impact signal in mechanical fault diagnosis under chaotic background. Mech. Syst. Signal Process. 99(15), 702–710 (2018)

    Article  Google Scholar 

  16. J. Hu, Y. Zhang, H. Li, M. Yang, W. Xia, J. Li, Harmonic signal detection method from strong chaotic background based on optimal filter. Acta Phys. Sin. 64, 22 (2015)

    Google Scholar 

  17. J. Hu, Y. Zhang, M. Yang, H. Li, W. Xia, J. Li, Weak harmonic signal detection method from strong chaotic interference based on convex optimization. Nonlinear Dyn. 84(3), 1469–1477 (2016)

    Article  MathSciNet  Google Scholar 

  18. X. Jiang, D. Liu, M. Cheng, M.F. Cheng et al., High-frequency reverse-time chaos generation using an optical matched filter. Opt. Lett. 41(6), 1157–1160 (2016)

    Article  Google Scholar 

  19. G. Kaddoum, H.V. Tran, L. Kong, A. Micheal, Design of simultaneous wireless information and power transfer scheme for short reference DCSK communication systems. IEEE Trans. Commun. 65(1), 431–443 (2017)

    Google Scholar 

  20. L. Liu, C. Guo, J. Li, H. Xu, J. Zhang, B. Wang, Simultaneous life detection and localization using a wideband chaotic signal with an embedded tone. Sensors 16(11), 1866 (2016)

    Article  Google Scholar 

  21. F. Liu, Y. Ren, X.M. Shan et al., A linear feedback synchronization theorem for a class of chaotic system. Chaos Solitons Fractals 13(4), 723–730 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  22. L.D. Liu, J.F. Hu, Z.S. He, C. Han, H. Li, J. Li, Chaotic signal reconstruction with application to noise radar system. Eur. J. Adv. Signal Process. 1(2), 1–8 (2011)

    Google Scholar 

  23. L.D. Liu, Y. Li, Z.L. Zhang et al., High-efficiency and noise-robust DCSK approach based on an analytically solvable chaotic oscillator. Electron. Lett. 54, 1384–1385 (2018). https://doi.org/10.1049/el.2018.6054

    Article  Google Scholar 

  24. L.D. Liu, Y.N. Wang, L. Hou, X.R. Feng, Easy encoding and low bit-error-rate chaos communication system based on reverse-time chaotic oscillator. IET Signal Process. 11(7), 869–876 (2017)

    Article  Google Scholar 

  25. M.S. Milosavljevic, J.N. Blakely, A.N. Beal, N.J. Corron, Analytic solutions throughout a period doubling route to chaos. Phys. Rev. E 95, 062223 (2017)

    Article  MathSciNet  Google Scholar 

  26. B.A.M. Owens, M.T. Stahl, N.J. Corron et al., Exactly solvable chaos in an electromechanical oscillator. Chaos Interdiscip. J. Nonlinear Sci. 23(3), 033109 (2013)

    Article  MathSciNet  Google Scholar 

  27. L.M. Pecora, T.L. Carroll, Synchronization in chaotic systems. Phys. Rev. Lett. 94(8), 821–825 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  28. H.P. Ren, C. Bai, J. Liu et al., Experimental validation of wireless communication with chaos. Chaos Interdiscip. J. Nonlinear Sci. 26(8), 083117 (2016)

    Article  MathSciNet  Google Scholar 

  29. H.P. Ren, C. Bai, Q.J. Kong, M.S. Baptistab, C. Grebogib, A chaotic spread spectrum system for underwater acoustic communication. Phys. A Stat. Mech. Appl. 478(15), 77–92 (2017)

    Article  Google Scholar 

  30. H.P. Ren, M.S. Baptista, C. Grebogi, Wireless communication with chaos. Phys. Rev. Lett. 110(18), 184101 (2013)

    Article  Google Scholar 

  31. A. Senouci, A. Boukabou, K. Busawon et al., Robust chaotic communication based on indirect coupling synchronization. Circuits Syst. Signal Process. 34(2), 393–418 (2015)

    Article  Google Scholar 

  32. A. Tayebi, S. Berber, A. Swain, Performance analysis of chaotic DSSS-CDMA synchronization under jamming attack. Circuits Syst. Signal Process. 35(12), 1–22 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  33. J. Teramae, D. Tanaka, Robustness of the noise-induced phase synchronization in a general class of limit cycle oscillators. Phys. Rev. Lett. 93(20), 204103 (2004)

    Article  Google Scholar 

  34. H. Yang, G.P. Jiang, J. Duan, Phase-separated DCSK: a simple delay-component-free solution for chaotic communications. IEEE Trans. Circuits Syst. II Express Briefs. 61(12), 967–971 (2014)

    Article  Google Scholar 

  35. J. Yang, Y. Chen, F. Zhu, Associated observer-based synchronization for uncertain chaotic systems subject to channel noise and chaos-based secure communication. Neurocomputing 167, 587–595 (2015)

    Article  Google Scholar 

  36. J.L. Yao, C. Li, H.P. Ren, C. Grebogi, Chaos-based wireless communication resisting multipath effects. Phys. Rev. E 96, 032226 (2017)

    Article  Google Scholar 

  37. L. Zeng, X. Zhang, L. Chen et al., Deterministic construction of toeplitzed structurally chaotic matrix for compressed sensing. Circuits Syst. Signal Process. 34(3), 797–813 (2015)

    Article  Google Scholar 

  38. H. Zheng, J. Hu, P. Wu, L. Liu, Z. He, Study on synchronization and parameters insensitivity of a class of hyperchaotic systems using nonlinear feedback control. Nonlinear Dyn. 67(2), 1515–1523 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Nos. 61701043, 41874140, 41704107), the Fundamental Research Funds for the Central Universities of China (Grant Nos. 300102248103, 310824173702), Shaanxi Province Science and Technology Programme (2018GY-019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lidong Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Wang, Y., Li, Y. et al. Noise Robust Method for Analytically Solvable Chaotic Signal Reconstruction. Circuits Syst Signal Process 38, 4096–4114 (2019). https://doi.org/10.1007/s00034-019-01043-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-019-01043-y

Keywords

Navigation