Skip to main content
Log in

Multi-angle Constant Multiplier Givens Rotation Algorithm

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper presents a new algorithm for implementing exact Givens rotation for use in QR matrix decomposition. The algorithm is based on constant multipliers to perform multiple angle rotations in parallel, reducing latency and gate count, and is called multi-angle constant multiplier. Complexity and optimal angle division sequences have been studied for up to 20 bits of precision. Bit-exact software implementation of the algorithm was used in QR decomposition of \(4\times 4\) matrices with 16 bits of precision, and its numerical stability was extensively tested. QR decomposition was implemented in Xilinx Virtex 6, where pipelining strategies for latency-operating frequency trade-offs have been considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. AC Datatypes v3.7 (2016). https://www.mentor.com/hls-lp/downloads/ac-datatypes. Accessed June 2016

  2. P.L. Chiu, L.Z. Huang, L.W. Chai, Y.H. Huang, Interpolation-based QR decomposition and channel estimation processor for MIMO-OFDM system. IEEE Trans. Circuits Syst. I Regul. Pap. 58(5), 1129–1141 (2011). https://doi.org/10.1109/TCSI.2010.2092090

    Article  MathSciNet  Google Scholar 

  3. A.G. Dempster, M.D. Macleod, Constant integer multiplication using minimum adders. IEE Proc. Circuits Devices Syst. 141(5), 407–413 (1994)

    Article  MATH  Google Scholar 

  4. A.G. Dempster, M.D. Macleod, Use of minimum-adder multiplier blocks in FIR digital filters. IEEE Trans. Circuits Syst. II Analog Digit. Signal Process. 42(9), 569–577 (1995)

    Article  MATH  Google Scholar 

  5. M.D. Ercegovac, T. Lang, Digital Arithmetic (Elsevier, Amsterdam, 2004)

    Google Scholar 

  6. G.H. Golub, C.F. Van Loan, Matrix Computations, vol. 3, 3rd edn. (JHU Press, Baltimore, 2003)

    MATH  Google Scholar 

  7. X. Hu, R. Harber, S. Bass, Expanding the range of convergence of the CORDIC algorithm. IEEE Trans. Comput. 40(1), 13–21 (1991). https://doi.org/10.1109/12.67316

    Article  Google Scholar 

  8. Z.Y. Huang, P.Y. Tsai, Efficient implementation of QR decomposition for gigabit MIMO-OFDM systems. IEEE Trans. Circuits Syst. I Regul. Pap. 58(10), 2531–2542 (2011). https://doi.org/10.1109/TCSI.2011.2123770

    Article  MathSciNet  Google Scholar 

  9. J.S. Lin, Y.T. Hwang, S.H. Fang, P.H. Chu, M.D. Shieh, Low-complexity high-throughput QR decomposition design for MIMO systems. IEEE Trans. Very Large Scale Integr. Syst. 23(10), 2342–2346 (2015). https://doi.org/10.1109/TVLSI.2014.2361906

    Article  Google Scholar 

  10. L. Ma, K. Dickson, J. McAllister, J. McCanny, QR decomposition-based matrix inversion for high performance embedded MIMO receivers. IEEE Trans. Signal Process. 59(4), 1858–1867 (2011). https://doi.org/10.1109/TSP.2011.2105485

    Article  Google Scholar 

  11. P. Meher, J. Valls, J. Tso-Bing, K. Sridharan, K. Maharatna, 50 Years of CORDIC: algorithms, architectures, and applications. IEEE Trans. Circuits Syst. I Regul. Pap. 56(9), 1893–1907 (2009). https://doi.org/10.1109/TCSI.2009.2025803

    Article  MathSciNet  Google Scholar 

  12. S.D. Munoz, J. Hormigo, High-throughput FPGA implementation of QR decomposition. IEEE Trans. Circuits Syst. II Express Briefs 62(9), 861–865 (2015)

    Article  Google Scholar 

  13. Spiral: Software/Hardware Generation for DSP Algorithms (2016). http://spiral.ece.cmu.edu/mcm/gen.html. Accessed June 2016

  14. Y. Voronenko, M. Püschel, Multiplierless multiple constant multiplication. ACM Trans. Algorithms (TALG) 3(2), 11 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. C. Zhang, H. Prabhu, Y. Liu, L. Liu, O. Edfors, V. wall, Energy efficient group-sort QRD processor with on-line update for MIMO channel pre-processing. IEEE Trans. Circuits Syst. I Regul. Pap. 62(5), 1220–1229 (2015). https://doi.org/10.1109/TCSI.2015.2402936

    Article  MathSciNet  Google Scholar 

  16. W. Zhao, J. Lin, S.C. Chan, Throughput/area efficient FPGA implementation of QR decomposition for MIMO systems, in 2016 IEEE International Conference on Digital Signal Processing (DSP) (2016), pp. 522–526. https://doi.org/10.1109/ICDSP.2016.7868612

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dušan N. Grujić.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grujić, D.N., Saranovac, L. Multi-angle Constant Multiplier Givens Rotation Algorithm. Circuits Syst Signal Process 38, 4229–4244 (2019). https://doi.org/10.1007/s00034-019-01060-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-019-01060-x

Keywords

Navigation