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Abstract

Multiple-input multiple-output (MIMO) technology is envisaged to play an important
role in future wireless communications. To this end, novel algorithms and architectures
are required to implement high-throughput MIMO communications at low power con-
sumption. In this paper, we present the hardware implementation of a modified K-best
algorithm combining conventional K-best detection and low-complexity successive
interference cancellation at different levels of the tree search. The detector is imple-
mented using a fully-pipelined architecture, which detects one symbol vector per clock
cycle. To reduce the power consumption of the entire receiver unit, costly symbol-rate
operations such as multiplication are eliminated both within and outside the detector
without any impact on the performance. The hardware implementation of the modified
K-best algorithm achieves area and power reductions of 16% and 38%, respectively,
compared with the conventional K-best algorithm implementation, while incurring a
signal-to-noise ratio penalty of 0.3 dB at the target bit error rate. Post-synthesis anal-
ysis shows that the detector achieves a throughput of 3.29 Gbps at a clock frequency
of 137 MHz with a power consumption of 357 mW using a 65-nm CMOS process,
which compares favourably with the state-of-the-art implementations in the literature.
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1 Introduction

The user demand for high-throughput wireless communications has been growing
considerably in recent years. Some two decades ago, the IEEE 802.11b wireless local
area network (WLAN) standard was introduced, which achieved a modest maximum
downlink throughput of 11 Kbps over a single-antenna communication link. The intro-
duction of multiple-input multiple-output (MIMO) technology to IEEE 802.11n a
decade later made throughputs of over 500 Mbps possible. More recently, with the sup-
port of up to eight antennas, throughputs of several gigabits per second are attainable
with wireless standards such as the IEEE 802.11ac [24]. With the expected widespread
deployment of MIMO technology to diverse devices in future communications sys-
tems [1], it is necessary to implement novel algorithms and hardware architectures to
achieve the gigabit data rates promised by MIMO technology.

A large number of algorithms have been studied for implementing MIMO detection
[28]. Tree search algorithms, which achieve the maximum likelihood (ML) diversity,
have attracted considerable attention, and several hardware implementations have been
successfully achieved [5]. Most notably, the K -best algorithm, which implements the
tree search using a breadth-first strategy, has received significant research interest as
it is able to achieve the ML diversity order with a complexity that is independent of
the signal-to-noise ratio (SNR).

The earliest implementations of the K -best detector [10,33] were based on a bubble-
sort tree search and were only able to achieve a few tens of megabits per second (Mbps)
in throughput. In [30] and [19], single-cycle merge-sort algorithms were proposed to
reduce the large latency of the bubble-sort implementations. In [26] and [22], a winner
path extension was proposed, which generates the best candidates in a time independent
of the modulation constellation size. More recently, the use of fully-pipelined K -best
detectors has been proposed in [13] and [18], which allows vastly improved data rates
to be achieved.

The main aim of this paper is to implement a K -best detector achieving the multi-
gigabit data rates required by high-throughput wireless schemes, such as the IEEE
802.11ac. To this end, a K-best detector will be implemented with a throughput of
one symbol vector per second, which is achieved by using fine-grained pipelining
of the processing elements. The resulting implementation achieves a throughput of
over 3 Gbps, which exceeds the throughputs of existing partially pipelined K -best
implementations. The main contributions of the paper are as follows:

1. We present a modified K-best algorithm combining K-best detection and suc-
cessive interference cancellation at different levels of the tree search, which are
determined after extensive simulations. Simulation results show that the SNR
loss of the proposed algorithm for a spatial-multiplexing MIMO transmission is
about 0.3 dB at a target bit error rate (BER) of 1073, Compared with a reference
conventional K-best detector, the area and power consumptions of the proposed
implementation were reduced by 16% and 38%, respectively.

2. The proposed implementation dispenses with costly symbol-rate precomputations
outside the architecture, which are required by the state-of-the-art implementations
such as [18]. To the best of our knowledge, this is the first fully-pipelined K -best
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detector to dispense with multiplication at the symbol rate within and outside the
architecture. Given the high complexity of fully-pipelined circuits, eliminating
costly operations, such as multiplication, is desirable to reduce the area and power
consumption of the entire receiver unit.

3. We propose a novel pipeline schedule, which employs “register sharing” for the
signal and channel inputs, which allows the proposed architecture to process up
to 24 independent channel matrices concurrently, making the implementation to
be applicable to fast-fading channel scenarios.

4. We compare pipelining as a technique for achieving multi-gigabit signal detection
with interleaving, where several MIMO detector cores are operated in parallel.
Using a 64-QAM 4 x 4 MIMO system, and based on the modified K -best algo-
rithm, our results show that pipelining can achieve a throughput advantage of
approximately 13 x compared with interleaving per unit area.

The paper is organised as follows. In Sect. 2, the MIMO system model and notations
used in the rest of the paper are presented. In Sect. 3, we present the conventional K -
best algorithm. Our proposed modification to the K -best algorithm is also presented
in this section, and its error performance is analysed and compared with other tree
search detection algorithms. In Sect. 4, the hardware implementation details of the
proposed K -best detector are presented. The results of the VLSI implementation of
the proposed detector are presented in Sect. 5 and compared with notable results from
the literature. The paper is concluded in Sect. 6.

The following notations are used in the paper. R{-} and J{-} denote the real and
imaginary parts of a complex number, respectively; A; ; represents an element in the
ith row and jth column of the matrix A; A; represents the jth column of A, while
A; j:k represents the vector [Ai,j, Aijrtsoen, Ai,k].

2 Background

2.1 MIMO System Model

We consider a MIMO transmitter employing N7 antennas and transmitting information
symbols over a wireless link to N receive antennas. The Ng x 1 received signal vector
(RSV), y, at the MIMO receiver is given by the following equation:

y:Hs+n, (1)

where H represents the Ng x N7 channel matrix, s represents the N7 x 1 modu-
lated MIMO symbol vector from the transmitter, and n represents the additive white
Gaussian noise. The entries of H are assumed to be independent and identically dis-
tributed with Rayleigh fading. To recover the transmitted symbol, s, at the receiver, a
QR decomposition can be performed on the channel matrix as follows:

¥ =Rs+Q"n, 2)
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where H = QR, §y = QHy, Q is a unitary Ng x Npg matrix, and R is an upper
triangular N x N7 matrix. For simplicity, we assume an equal number of antennas
at the transmitter and receiver; i.e. Ny = Ng.

2.2 Real-Valued Channel Model

A real-valued decomposition (RVD) can be performed on the channel matrix to trans-
form (1) as follows [30]:

[9‘1{)’}} _ [%{H} —3{H}} [9‘{{5}] n [m{n}} 3)
Iy} JH} R{H]} | | J{s} J{n} |’
which transforms the complex constellation set into the integer set as follows:

p:{-mﬂ,...,m_l}, @

where M is the modulation order. The QR decomposition can then be performed on
the basis of the augmented channel equation in (3).

The RVD transformation simplifies the tree search in hardware as it is easier to
operate on real numbers than complex numbers. In unpipelined detectors, the complex
channel model has the advantage of resulting in a higher throughput since the tree
depth is shorter. However, as we will see in subsequent sections, the channel model
employed becomes less relevant to the throughput of the detector in a fully-pipelined
implementation.

2.3 MIMO Detection

The aim of the MIMO detector is to provide an estimate, §, of the transmitted symbol
vectors. The maximum likelihood (ML) solution is obtained as the symbol vector
which minimises the Euclidean distance, ||y — Hs||?. As a result of the triangular
channel matrix, R, the Euclidean distance, T, of the lattice point, HS, from the received
signal can be computed successively as follows:

2N 2N

T =Y 3%= rijsi| - )
j=i

i=1

For example, for N7 = 2, and using a real channel model, the Euclidean distance is
computed incrementally over four levels in the following sequence:
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( Y4 — 14 4S4)2+ i
(93 — (r3.484 + r3,3S3))2—|— i e
($2 — (r2.ass + 2353 + r2.29)) + 3 8
(91 = (r1.454 +ri3s3+ri250 + V1,1S1))2, L

where the Euclidean distance at each level is referred to as the partial Euclidean distance
(PED). Equation (5) describes a tree, initially with |D| branches at the topmost level,
which correspond with the constellation set, D. Interested readers are referred to
[11] and [23] for a more in-depth discussion on tree search detection. Each branch,
extended to the last level, i = 1, represents a potential solution. A total of |D|*NT
solutions are possible in the ML search. As a result of the exponential complexity of
the ML detector, a number of algorithms with sub-ML BER performances have been
proposed as alternatives in the literature [28].

3 K-Best Algorithm

The K-best algorithm employs a breadth-first search, where the children of parent
nodes retained from a previous level are expanded in parallel. The PEDs of the nodes
can be computed using the £'-norm approximation as follows [6]:

Ti (si) = Tiy1 (siv1) + |bi — riisi] (6)
where T; (s;) represents the PED of a symbol at the ith level, ;1 (s;+1) denotes the
PED of its parent, and

2N

— Z ri,jSj- (7)

j=itl

A node refers to a symbol drawn from the real constellation set in (4) at a given level
of the tree search. For brevity, T; (s;) will be denoted by 7; in subsequent discussions.
Each level corresponds with a row of the triangular channel matrix, R. Thereafter, a
sorting operation is carried out to select the best K candidates, which are passed as
the parent nodes to the next level. The PED can also be computed as [6,13]:

Ty = Tis1 + |riyi (ci — si)

, ®)

where ¢; = b; /r; ; and is referred to as the Schnorr-Euchner (SE) centre. Visiting the
child nodes according to their distances from the SE centre speeds up the tree search;
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however, computing the SE centre leads to a costly division step which is avoided in
(6).

A pitfall of the K-best algorithm is that the complexity tends to be high since the
operations need to be duplicated over 2Nt levels. In [2], a fixed-complexity sphere
decoder (FSD) was proposed, which dispenses with the need for sorting, and instead,
combines ML detection with low-complexity detection techniques at lower levels.
The FSD relies on a vertical Bell Laboratories layered space-time (V-BLAST) [32]
channel ordering at the preprocessing stage, which could result in a high complexity
and throughput degradation in fast-fading channels. It is thus desirable to implement
techniques that will reduce the complexity of the K-best detector, without requiring
any additional preprocessing operations. A modified K -best algorithm is proposed in
the next section.

3.1 Proposed K-Best Algorithm

In this paper, we propose a hybrid detector, where the K -best detection is carried out
only for “upper” levels of the tree search, defined as I < i < 2Nr, where i is the level
index, and I is some integer between 1 and 2N7. Ati = 1, sorting can be avoided,
since only a single path, not K paths, are required. The rationale of this technique
is the fact that it is easier to make an erroneous decision in the upper levels since
any error will be propagated to subsequent levels of the tree, which progressively
worsens the detection symbol error rate. This observation has also been employed in
non-constant K -best detectors [20,29], where smaller K values are applied at lower
levels. In the detector proposed here, the same value of K is maintained throughout
the detection; however, only a low-complexity successive interference cancellation
(SIC)-based extension is carried out in lower levels. K-best detection is carried out
up till i = 1. If I = 1, then the hybrid detector reduces to the conventional K -best

Algorithm 1 Modified K -best Algorithm
i < 2Nt
Compute 7; Vs; € D
Kji,l:«/ﬁ <D

i<—i—1

while i > 1 do

if i > I then
Compute T; for all children of KC; 1 1.x
Ki1.x < KBEST(Si’j’k)Vi, Jj. k
UPDATE(K; 1.x) wherei < j < 2Np

else
Extend the best children of IC; | .k using Equation (9)
Compute 7; for each extended child

end if

i<«i—1
end while

§ < K4
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detector. In levels i < I, the best child of each of the K -best paths, sl.[]], extended up
till i = 1, is derived as follows:
(17 _ ; g
s; = argmingp |bl rmsl| . O]

No sorting operation is carried out to select the best K candidates for levels less than /.
However, at the last level, a minimum (MIN) search amongst all the K -best candidates
is carried out to determine the hard-detection output. It should be noted that at each
level below 1, this technique will always select the minimum-metric candidate from
each parent node. However, the K candidates so selected may differ from the K -best
candidates selected by the conventional K-best algorithm. The K-best detection is
summarised in Algorithm 1, with the proposed SIC detection steps highlighted in
bold. s; ; x represents the jth child of the kth parent at the ith level. K represents a
2Nt x K matrix of K-best symbols. The KBEST function sorts all the candidates at
a given level in ascending order and selects the top K results. The UPDATE function
permutes the previously detected paths, XC;41.2n,,1:x» according to the sorted PEDs
of i 1.k

Unlike conventional SIC-aided linear detection [32], no slicing operation is required
to obtain the detected symbols in the proposed algorithm. Apart from the SIC detection,
a low-complexity SE enumeration is adopted where only the best A < +/M children
of a node are enumerated [3]. For the conventional K -best detector, A = VM for all
extended parent nodes. In our implementation, A = +/M is selected for the first two
levels of the tree search, while 1 < /M is applied in subsequent levels.

3.2 Performance Analysis

In this section, we compare the performance of the proposed hybrid K-best algo-
rithm (KB-SIC) described in the previous section with the conventional K -best
algorithm employing A = 8, for a MIMO system transmitting over a Rayleigh flat-
fading channel using four antennas and 64-QAM. The BER simulation is shown in
Fig. 1. The value of K is selected as 16 for both the conventional and hybrid K-
best detectors. A non-constant K -best (NKB) detector [13] employing K values of
[Kg K7 ... Ki] = [88884221] is shown, where K; is the number of candidates
extended at the ith level, and K>y, corresponds with the number of constellation
points. A fixed-complexity sphere decoder employing a minimum mean square error
V-BLAST channel ordering is also shown. The FSD uses a real channel model and a
node distribution of [n ny ... ng] = [11112288], where n; is the number of nodes
extended per parent in the ith level. A total of 800, 000 symbol vectors were used for
the simulation, with a new random channel matrix, with independent and identically
distributed gains, generated once for every four symbol vectors. All detectors are based
on the £!'-norm approximation of the PED proposed in [6].

The hybrid K -best detector is simulated for / = 4, 5 and 6. The BER simulation
shows that increasing the value of I also increases the BER. This is because larger
values of I increase the number of levels that erroneous detections will be propagated
to. KB-SIC with / = 4 and A = 4 suffers an SNR loss of about 0.3 dB and 0.6
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Fig.1 BER versus SNR for different MIMO detectors using a real channel model for 64-QAM and N7 = 4

dB at a BER target of 103, compared with the conventional K -best detector having
A = 4 and L = 8, respectively. By contrast, KB-SIC with I = 6 suffers over 1-
dB SNR loss compared to the conventional K-best detectors. Despite the V-BLAST
preprocessing, the FSD with the adopted node distribution shows a reduced error
performance compared with the K-best detectors, which is as a result of the low-
complexity detection adopted at lower levels. The performance of the K -best detectors
can be improved by using a V-BLAST channel ordering or sorted QR decomposition
[35] in the preprocessing stage, while the FSD can be further improved by increasing
the node distribution.

3.3 Complexity Analysis

The complexity of tree search algorithms is typically defined as the number of nodes
visited in the tree search [11]. As a result of the SIC detection in some levels, the
complexity of KB-SIC is reduced compared with the conventional K -best algorithm
as shown in Table 1. For ease of comparison, all detection algorithms are based on areal
channel model. For I = 4 and A = 4, KB-SIC expands 312 nodes, which is more than
a 50% reduction compared with the number of nodes expanded by the conventional
K -best (KB) detector. For both KB-SIC and KB, only the best child nodes of each
parent are expanded in the last level, which simplifies the SE enumeration.

The FSD expands the largest number of nodes compared with the other algorithms
in Fig. 1. However, it should be noted that the FSD can achieve a much-reduced number
of expanded nodes if a complex channel model is used. For example, the complex FSD
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Table 1 Number of nodes
expanded for the different tree

search detectors in Fig. 1 for
KB VM +vVM+ KQ2Np -3 K 728
N7 = 4 and 64-QAM using a 1+ + KGN )+

Detector Number of expanded nodes Ny =4

2N —1
real channel model T
NKB M+ Y KM 272
i=1
2N72Np+1
FSD ST ming 1480
i=1 j=i+1

2N7—-2
KB-SIC VMO + VM) + Z Kr+ KU —-1) 312
i=I

100 T T T T T
F —4—K = 8, real channel
[ -&-K = 8, complex channel
—- K = 16, real channel
—A-K = 16, complex channel
107t
1072
1073 |
1()*4 | | | | | | | | |

10 12 14 16 18 20 22 24 26 28 30

Fig.2 Performance of the K -best detector for different values of K using real and complex channel models
for 64-QAM and N7 = 4. All K-best implementations are based on the ¢ Lnorm approximation

with a node distribution of [1 1 1 64] expands just 512 real nodes, while achieving a
near-ML performance [2]. Each node in the complex channel model is counted as
two real channel model nodes. This result suggests that it is more advantageous to
implement the FSD based on a complex channel model rather than on a real channel
model. On the other hand, the K -best detector expands a fewer number of nodes in the
real channel model. For example, the real K-best algorithm expands 728 nodes and
1384 nodes, respectively, for K = 16 and 32, while the complex K -best algorithm
expands 4256 and 8384 real nodes, respectively, for the same values of K . Furthermore,
the real channel model exhibits a better BER performance for the same value of
K compared to the complex channel model as shown in Fig. 2. A more rigorous
comparison of the real and complex channel models is provided in [9].
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Although the FSD expands a fewer number of nodes compared with the K-best
detector, it also requires a mandatory V-BLAST preprocessing step. In a slow-fading
channel, this additional preprocessing can be ignored; however, in a fast-fading chan-
nel, this can impose additional complexity at the receiver side as the V-BLAST
preprocessing requires computationally expensive operations such as finding the chan-
nel matrix inverse. As will be shown later in the paper, the K -best algorithm can be
implemented entirely with only simple operations, such as shifts and additions, without
any impact on the performance.

4 Hardware Implementation

The proposed K -best detector is implemented for a MIMO system employing 64-QAM
and 4 x 4 antenna configuration. I and A are both selected as 4. The inputs, y and R,
are represented using signed 14 bits. The 64-QAM symbols of the real constellation
set are represented using three bits. The PEDs are represented using unsigned 13 bits.
All variables are represented using two’s complement fixed-point format. In the next
sections, the hardware implementation details of the proposed detector are presented.

4.1 Schnorr-Euchner Enumeration

In this work, the Schnorr-Euchner enumeration [25] is employed to list the children of

each parent node according to their metrics. The child nodes can be enumerated in a

zigzag fashion by finding the node that minimises the PED increment term as follows:
(k]

s; =argming .p |b; —1iisi|,

[1
I

sl.[k_l]}, where each symbol is drawn from the real constellation set, D. The process
is repeated until all v/M children of the parent node are listed. Note that the SE
enumerations of the children of all the K parents are executed in parallel. An SE
enumeration for 16-QAM is illustrated in Fig. 3, where the numbers within the circles

where k represents the current iteration of the SE enumeration, and s; ¢ {s I , sl.m, e,

Fig.3 SE enumeration based on a real axis for 16-QAM. The encircled numbers indicate the child ordering.
In this case, b; falls within the positive r; ;s; axis and the enumeration is {+1, +3, —1, —3}
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indicate the enumeration ordering, or the distance of b; from r; ;s;. To speed up the
procedure, a tabular enumeration is employed, where the possible enumerations are
precomputed and stored into a lookup table (LUT). Simulation results show that this
has negligible impact on the BER [31]. It should be noted that the computation of ; ;s;
does not require any multipliers. Since s; is drawn from a known integer set, r; ;s; can
simply be obtained using adders and shifters [34].

There are 14 possible enumerations overall, based on the location of b; on the
ri is; axis. However, due to the symmetry of the r; ;s; axis, it is sufficient to compute
only half of the enumerations by comparing |b;| with |r,',,'sl~ | That is, the enumeration
with b; on the positive r; ;s; axis is comparable with the enumeration with b; on the
corresponding location on the negative r; ;s; axis with the symbol signs flipped. The
actual enumeration can then be determined by “flipping” the computed enumeration
if b; and r; ; have different signs as follows:

+E(|bi],
—E(|b;],

rii|) if sign(b;) = sign(r; ;)

Ebi i) =
G710 riil) if sign(by) # sign(ri i),

where E(b;, r; ;) computes the enumeration based on b; and r; ; and sign(.) returns
the most significant bit of its argument. A circuit to compute the tabular enumeration
is shown in Fig. 4. The circuit consists of six comparators, which compare |b;| with
integer multiples of |r,-,,- | The outputs of these comparators are passed to a priority

:

el T
\ I,
;:' > \ /

T b;
n n
sign \\
sign )
| A | f)
- x
@) [f ()]
3 ] ] sel N
\
e ST >— — a
. h \
} > 5 ! \
s et O——>— lo—{ T !
=l * X | )
Yoo = Py L&
te o1 — - lo—g| £
— B LUT . 3 ‘ =y
1 = @ ST .
3 > ~ = | g1
. . 3 I saly
) : =
= —
) I
)
lo—|"

Fig.4 SE enumeration unit using a lookup table. An XOR gate is used to decide whether to “flip” or “keep”
the computed enumeration based on the signs of b; and r; ;
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encoder, which selects the appropriate enumeration from the LUT. In the proposed
detector, the full enumeration (A = 8) is only employed in the second level (i = 7),
while only the top A = 4 best children are enumerated in levels i >= I. In levels
i < I, only the best child of a parent node is enumerated.

4.2 Sorting

Sorting plays an important role in the complexity, performance and throughput of
the K-best detector. In this paper, we employ the Batcher’s bitonic and odd-even
algorithms, which utilise an interconnection of comparators to sort an input list, to
compute the best K candidates. From level 6 to 4, atotal of A = 4 children are expanded
from each K parent, and these are sent in pairs to a merge unit. Each candidate is
organised as (s; j k, Ti j k, k), where s; ; 1 is the jth child of the kth parent node at the
ithlevel and T; ; i is its corresponding metric. This process is continued successively
until all K x A = 64 candidates are obtained. However, since K is selected as 16 for
the proposed detector, the bottom 48 candidates, and all associated comparators, are
discarded. A tabular Schnorr-Euchner enumeration, described in the previous section,
is used to presort the children of each parent, which reduces the complexity and latency
of the merge unit.

The merge process is illustrated in Fig. 5. The first row represents the A children
of all the K parents. Each subsequent horizontal line represents the output of a stage
of the merge network. Four merge stages are thus required to obtain the fully-sorted
result. In level 7, eight children are expanded from eight constellation points resulting
in a total of three merge stages. To reduce the latency, the merge network is pipelined
such that the best K children are produced within two clock cycles. A more detailed
description of the merge network has been presented in a separate paper [4].

4.3 Pipeline Schedule

The K -best detector is typically implemented using a multi-stage architecture, where
each stage corresponds with a level in the tree search. Multiple received signal vectors
can be processed concurrently, such that a new detected symbol vector is generated
after every Cj clock cycles, where C; is the number of clock cycles required to process
the ith stage. If a long-latency sorting algorithm is employed, such as the bubble sort

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
—_— e o e e e e e e o e e e e e

8 8 8 8 8 8 8 8
16 16 16 16
32 32
___________________________ 18 16

Fig. 5 Merge network for selecting 16 candidates. The dashed line represents the discarded candidates at
the output of the merge network
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Time slots
1 2 3 ‘ 4 5 ‘ 6 ‘ 7 | s 18 19 20 21 22 23 24 25 26 27
K-best SIC K-best

}70) PED [INFR| PED [PED*| PAU |[INFR|PED| - - - |INFR| PED |[INFR|PED |[INFR| PED | PAU | PED

y@ PED [INFR| PED [PED*| PAU |INFR|PED | - - - |INFR| PED |INFR| PED |[INFR|PED | PAU | PED
én y® PED [INFR| PED [PED*| PAU |INFR|PED | - - - |INFR|PED |INFR| PED [INFR|PED | PAU | PED
wn

S,(z.u PED |[INFR| PED [PED

Fig.6 Pipeline schedule for a K-best detector with Ny = 4

[33], or distributed sort [26], then achieving a throughput of 1 Gbps and over is
challenging, unless the clock frequency is increased considerably.

The detection latency can be reduced by employing a merge-sort algorithm, such as
the Batcher’s odd-even merge, as described in the previous section. However, a more
dramatic improvement to the throughput is obtained by fully pipelining the multi-stage
architecture, such that a new result is generated in every clock cycle. The architecture
is fully pipelined by ensuring that no single operation takes more than one cycle to
complete, and a different RSV is processed at the next clock cycle in every pipeline
stage. Large combinational blocks, such as the merge network, are broken into smaller
combinational units in order to reduce the latency.

Figure 6 illustrates the pipeline schedule for a MIMO system employing N7 = 4.
PAU represents the path update operation, while INFR represents the interference can-
cellation step in (7). PEDT does not execute any arithmetic operation: In this pipeline
stage, the outputs of the first stage of the pipelined merge network are propagated to
the second stage, where the fully-sorted PEDs are obtained. The PED computation
at the topmost level is denoted by PED. For the first 17 clock cycles, the normal X -
best operations are carried out for the first RSV, while the low-complexity SIC-based
detection is performed from the 18th to the 21st clock cycles. Normal K -best detection
is resumed in the 22nd clock cycle, corresponding with the start of the last tree level.

In the top level of the tree search (i = 8), only a PED operation is executed to expand
the /M constellation points, which marks the beginning of the first RSV, denoted by
§(. In the second clock cycle, the interferences of the expanded constellation points
are cancelled from the signal entry at level 7 as follows:

b7 = 7 — r7.85s.

At the same time, the PEDs of the constellation points for the second RSV are com-
puted. The PEDs of the candidates at the seventh level for the first RSV are then
computed according to (6). The candidate nodes are sent immediately to the pipelined
merge network. The remaining tree levels are processed similarly until the sixth and
seventh levels where only a low-complexity SIC detection is carried out. These levels
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are processed within two clock cycles, and no path update operation is executed since
no sorting is carried out. In the final level (i = 1), a minimum-metric search is carried
out, instead of full sorting, and the level is processed within three clock cycles. Over-
all, 24 clock cycles are required to completely process one RSV. Thus, in order to fill
the pipeline, such that one result is generated in every clock cycle, 24 RSVs need to
be processed concurrently by the K-best detector. By comparison, the conventional
K -best algorithm requires 28 RSVs to achieve a full pipeline, which increases the area
and power consumptions. In the next sections, the data movement of various variables
and intermediate results within the pipeline will be discussed.

4.3.1 Signal and Channel Inputs

Since multiple RSVs are processed in the pipelined detector, multiple registers need
to be allocated to the channel entries, ¥ and R. In a straightforward implementation,
the registers will need to be replicated 24 times for a 4 x 4 MIMO system, and
multiplexers can then be used to select the appropriate register corresponding with the
current RSV. In this work, we propose a register-sharing approach, where registers are
shared amongst the RSVs as soon as the registers become available. This is based on
the observation that not all inputs and intermediate results are required for the entire
duration of the pipeline. For example, rg g and yg are only required in the first clock
cycle for the expansion of the constellation points, while r; ;1 is only required in the
23rd clock cycle. Therefore, assuming a new channel realization for each RSV, a shift
register of length 23 is required to ensure that ry 1 is correctly read to compute the
PEDs of the last-level nodes for all RSVs.

Figure 7 shows the pipeline schedule and the clock cycles in which the channel
inputs are read. The non-diagonal entries of the triangular channel matrix are read
row-by-row and sent to a shift register for the computation of the interference terms.
Non-diagonal elements in the upper rows of the triangular matrix require longer shift
registers than those in lower rows. For example, 75 6, 5 7 and rs g require a shift register
of length 10, while r7 g requires a shift register of length 2. The diagonal elements
are read one clock cycle later for the computation of the PED. Unlike some authors
[27], no assumption is made about the sampling rate of the channel, and the proposed
pipeline schedule can potentially support a new set of channel realizations in every
clock cycle. By utilizing the register-sharing technique, the detector is able to process
a maximum of 24 independent channel matrices concurrently.

1 2 3 4 5 6 7 8 9 10 11
Clock L[ L[ L[ L1 L1 L1 L7 7 7 7 [
Operation _PED | INFR_J PED J PED* | PAU J INFR J PED | PEDT f PAU J INFR ) PED |
Level _&8 7 7 Y 7 Y 7 ¥ 6 6 [ 6 Y 6 Y 5 Y 5
Data __ 7 [ =Y 777 X I ) SN ST X | SN B
78,8 U8 77,85 7 76,75 7’6,87@6 5,65 5,7, 75,8, U5

Fig.7 Data movement of signal and channel inputs in the K-best pipeline
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1 2 3 4 5 6 7
Clock L L T L | L[ LI LI 1L}

Operation PED | INFR_\ PED | PED* | PAU J INFR | PED |
level —8 {7 J 7 [ 7 Y 7 Y 6 ¥ 6 ]
Data _ Tz X b X T Y T; | b X Z}i [

Fig.8 Data movement of the PED in the K -best pipeline

4.3.2 Partial Euclidean Distance

The PEDs and intermediate interference cancellation results, b;, can also be stored
in time-multiplexed registers similar to the channel inputs described in the previous
section. In the first clock cycle of the pipeline schedule, T3 is computed for the first
RSV. In the second clock cycle, b7 for the first RSV is computed; however, its value
is only used in the third clock cycle where 77 is computed. Thus, a single register,
multiplexed amongst 24 successive RSVs, is sufficient to store the computed values of
b7. The computed 77 values are propagated into the pipelined merge network, and the
fully-sorted 77 values are obtained in the fourth clock cycle. In the seventh clock cycle,
the computed 75 values are consumed to compute 7g. Therefore, 77 can be stored in
a shift register of length two, which reduces the number of 77 registers by more than
85% compared with the direct implementation allocating a dedicated register to each
RSV. However, for levels 2 and 1, only a single register is required to store the values
of T3 and T3, since the SIC detection in levels 3 and 2 eliminates the PAU pipeline
stage. The data movement of the PEDs and interference terms is illustrated in Fig. 8,
with the number of clock cycles required for holding the values of 73 and 77 shown
in the circles.

4.4 Overall Architecture

The overall architecture of the K-best detector is demarcated into a controller unit
and a datapath as shown in Fig. 9. The inputs to the detector include the signal vector,
comprising eight entries, and the triangular matrix, comprising 36 entries. All inputs to
the detector are real numbers represented in fixed-point format. The datapath comprises
eight processing elements (PEs), with each PE corresponding with a level of the tree
search. A PE finds the best K candidates at a level, and these are forwarded as the
parent nodes to the next PE. All the PEs adopt a multiplier-free datapath to reduce the
area and power consumption. The controller oversees the operation of the datapath and
is implemented as a finite state machine (FSM), whose states correspond with each
of the pipeline stages shown in Fig. 6. A frame_ready signal is used to launch the
FSM from its idle state to the first state of the pipeline. After the pipeline is filled, the
controller asserts an output_ready signal, and the detected symbol vectors become
available at the next clock cycle. In the next section, the processing elements at the
various levels of the tree search will be discussed in more detail.
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Fig. 9 Overall architecture of the fully-pipelined K-best detector. The entries of the input signal and
triangular channel matrix are stored in shift registers, which are sized to ensure that the inputs are correctly
read in the appropriate pipeline stage

4.4.1 Processing Elements 8 and 7

The first two processing elements in Fig. 9 correspond with levels eight and seven of
the tree search. The two PEs expand the constellation points and their +/M children to
derive the initial K paths. Initially, only +/M symbol registers, corresponding with the
constellation points, are filled in level 8. However, after the path update operation of
level 7, the topmost symbols are expanded to fill K symbol registers. All /M children
of the top level constellation points are expanded. For PE §, no SE enumeration is
required; however, in PE 7, a tabular enumeration is used to list the \/M children of
each level 8 constellation point, according to their PEDs, as illustrated in Fig. 4.

4.4.2 Processing Elements 6 to 4

The PEs in this level are quite similar. The main difference is in the computation of (7),
with PEs at lower levels requiring longer adder chains to sum up the interference terms,
ri,j8;. Each PE in these levels consists of K expansion units for computing (6) for each
of the child nodes of the previous K parents, and a merge network, for computing the
best K candidates. The SE enumeration units in these levels are simplified compared
to that of PE 7 since only the top A child nodes are required. The PEs are divided into
three pipeline stages: INFR, PED, PED™. As such, each PE processes three RSVs
concurrently.
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4.4.3 Processing Elements 3 and 2

These processing elements perform the SIC detection described in Sect. 3.1. The
minimum-metric node of each parent is precomputed and is determined dynamically
based on the values of b; and r; ;. Since only a single child node is required (i.e. A = 1),
this simplifies the implementation of the lookup table compared with PEs 7 to 4. Each
PE in this stage comprises two pipeline stages: INFR and PED. As such, a total of
four RSVs are processed concurrently in levels 3 and 2.

4.4.4 Processing Element 1

This is the final processing element in the datapath. Unlike PEs 7 to 4, no sorting
is required, since only one path is needed to obtain the hard-detection output. A
minimum-metric path unit compares the best child of each K parent from level 2 and
successively determines the minimum-metric candidate by comparing two candidates
at a time. After the best node at the last level is obtained, a path update operation is
performed, which updates the previously detected symbols up to level 8 according to
the path index of the best node in level 1. In contrast to the symbol registers in previous
levels, only a single symbol register is required to store the last-level symbols, §1, for
all RSVs, since the last-level symbols are held for only one clock cycle.

5 Results and Discussion

In this section, we will present the implementation results of the proposed K -best
detector and compare with other notable MIMO detector implementations for a 64-
QAM 4 x 4 MIMO system. We will also compare the proposed implementation with a
conventional K -best detector utilizing K -best detection in all stages of the tree search
in order to assess the impact of the SIC-based detection in the proposed implemen-
tation. To ensure a fair comparison with other works, the power consumption (P) is
scaled to a common technology reference of 65-nm at a core voltage of 1.05 V accord-
ing to 1/U?, while the throughput (®) is scaled according to S, where U is the ratio
of the voltage to the reference voltage, and S is the ratio of the target technology to
the reference technology [8].

Two detectors are implemented. The first implementation (ASIC I) is based on the
conventional K -best algorithm, while the second implementation (ASIC II) is based
on the proposed hybrid KB-SIC algorithm. Both implementations employ A = 4. The
power consumption of the proposed detector is determined using Power Compiler
after a post-synthesis gate-level simulation, while the area consumption is determined
after a place-and-route step in Cadence Encounter, and is expressed in terms of the
gate equivalent (GE). One GE is the area of one two-input drive-1 NAND gate. The
throughput of the K-best detector is computed as follows:

_ Nt xlogy, M x fox X R
Neix

P

Mbps,
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where fx is the clock frequency of the detector, and R is the code rate, which is equal to
one for the hard-detection case considered. For the fully-pipelined detector, the number
of clock cycles required to generate a symbol vector, Nk, after the pipeline is filled, is
equal to one. Thus, at a clock frequency of 137 MHz, the detector achieves a throughput
of 3288 Mbps, which makes it suitable to high-throughput standards such as the IEEE
802.11ac. As presented in Table 2, ASIC II achieves area and power consumption
figures of 1467 kGE and 357 mW, respectively, which correspond with reductions in
the area and power consumption by 16% and 38%, respectively, compared with the
reference detector, ASIC 1.

5.1 Comparison with State-of-the-Art

The proposed detector is compared with notable ASIC implementations of MIMO
detectors in Table 2. All detectors are based on a 64-QAM 4 x 4 MIMO communication
system. As expected, our implementation achieves a higher throughput than all the
partially pipelined detectors (i.e. detectors with symbol-vectors-per-cycle less than
one), even at the moderate clock frequency of 137 MHz. Apart from Mondal et al.
[22], our design employs the largest K value, which has beneficial effects on the BER,
but is also partly responsible for the comparatively large area. In [3], only a subset
of the children of a parent node is considered for the sorting similar to the proposed
implementation. However, in that implementation, an approximate sorting scheme was
used leading to more than a 3-dB SNR loss at a target BER of 10~3. Furthermore, the
work employed a folded architecture resulting in a modest throughput of 300 Mbps.
Huang and Tsai [13] and Mahdavi and Shabany [18] employ a similar fully-
pipelined tree search as our implementation. In the case of Huang and Tsai [13], a low
complexity is achieved by employing small non-constant values of K depending on
the tree level. However, this results in an appreciable performance loss as highlighted
in Fig. 1. Furthermore, the use of small K values makes the architecture less suitable
for generating accurate reliability information on the detected bits in a soft-output
implementation. It should also be mentioned that the area presented does not include
the contribution of the channel matrices as is the case in the proposed implementation.
Mahdavi and Shabany [18] report a high scaled throughput of over 20 Gbps based
on a complex-model K -best implementation. To reduce the complexity of the archi-
tecture, y; and r; ; are scaled by #; ; outside the architecture in order to compute the
complex-domain SE enumeration at each level. To achieve the scaling, both the real
and imaginary parts of J; and r; ; are divided by r; ;. It should be noted that the impact
of these extra-architectural overheads is not reflected in the results presented in Table 2.
To implement the receiver unit with low power consumption and high throughput, it is
important that the MIMO detector, as well as interfacing architecture, is implemented
with low complexity. In [18], it can easily be shown that the total number of divisions
required by the architecture scales quadratically with the number of antennas. Overall,
20 real 16-bit divisions are required to detect one symbol vector for N7 = 4 using this
architecture. Although the scaling of r; ; could be done infrequently if the channel
is fairly stationary, the scaling of y must be carried out for every RSV, which could
significantly impact the throughput and power consumption in a practical scenario.
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Furthermore, if the divisions are implemented using combinational logic, the impact
on the area of the overall receiver unit is likely to be considerable.

Due to the use of a precomputed tabular enumeration, and the computation of the
PED using (6), our implementation completely avoids multiplications at the symbol
rate, which are required by [13] and [18]. In fact, if the QR decomposition is imple-
mented using the CORDIC implementation of the Givens rotation [12], the signal
detection could be realised completely multiplier free.

5.2 Cost of Pipelining

The proposed detector is implemented using a multi-stage architecture, where multiple
tree searches are executed concurrently. To compute the hardware cost of pipelining,
we implement a multi-stage detector with single-tree processing. In [15], it is shown
that several unpipelined single-tree multi-stage (STMS) detectors can be interleaved
to achieve a higher detection rate. The key advantage of the STMS detector is its low
power consumption; however, its throughput is tied to the latency and the channel
model employed.

We implement the STMS detector using the ST 65-nm technology, and it achieves
a post-layout area of 790 kGE and a latency of 25 clock cycles. We can determine
the pipelining cost by comparing the throughput-to-area ratios (TAR) of the pipelined
detector to that of the unpipelined STMS detector as follows:

TAR of pipelined detector

Relative TAR = — )
TAR of unpipelined detector

which gives the throughput advantage of the pipelined detector over the STMS detector
per kilo gate equivalent of the area. Assuming the same clock frequency, the relative
TAR is 13.46. This implies that given the same area, the fully-pipelined detector
achieves a throughput of more than 13 x compared with the unpipelined STMS detec-
tor. Thus, we can conclude that despite the additional complexity incurred, pipelining
is more hardware efficient than interleaving several unpipelined detectors in order to
achieve gigabit data rates.

5.3 Complex Versus Real Fully-Pipelined K-Best Detector

In the following, we highlight the relative advantages of the real and complex-model
K -best detector with respect to different metrics. We conclude that in most scenarios,
implementing the K-best detector using a real channel model is advantageous.

5.3.1 Performance

Both the real and complex K -best detectors are “suboptimal” algorithms with respect
to achieving the ML bit error rate performance. Given the same value of K, however,
the real K -best detector achieves a better BER performance as highlighted in Fig. 2.
Intuitively, we can attribute this performance discrepancy to the fact that since there
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are more branches per level in the complex channel model, more potential solutions
will be discarded for the same value of K compared with the real channel model.

5.3.2 Complexity

Implementing the K -best detector using the real channel model has three major advan-
tages with respect to the hardware complexity. Firstly, it simplifies the PED blocks
by substituting complex-valued symbols with integers; secondly, the SE enumeration
can be obtained using simple integral comparisons as illustrated in Fig. 3, and finally,
since the complex K -best detector requires a larger K value to achieve the same BER
as the real channel model, its complexity is further increased. There is yet no easy
analytical method to determine which channel model to adopt for all communica-
tions requirements to achieve the lowest complexity. This can only be conclusively
determined using actual hardware implementations based on the two models.

5.3.3 Throughput

Both the real and complex channel models can achieve a throughput of one symbol
vector per clock cycle using a fully-pipelined approach. However, the simplified data-
path of the real channel model is advantageous as there is better potential to achieve a
higher maximum clock frequency, thereby, achieving a higher throughput. However,
in single-tree architectures [3,21], the shorter latency of the complex channel model is
advantageous, as the throughput is now directly proportional to the latency. As aresult,
the real channel model is more attractive for applications where high throughput is the
most critical requirement.

6 Conclusion

In this paper, we have presented the VLSI implementation of a fully-pipelined K-
best detector based on a 65-nm CMOS process. The detector is based on a hybrid
K -best algorithm, which utilises a successive interference cancellation detection at
lower levels of the tree search to reduce the complexity of the detector compared
with the conventional K -best algorithm, incurring a 0.3-dB SNR loss at a target BER
of 1073, The implementation results indicate that the hybrid detector reduces the
area and power consumption by approximately 16% and 38%, respectively, compared
with a reference fully-pipelined K-best detector employing K-best detection at all
levels of the tree search. Using a real channel model and tabular enumeration, the
proposed implementation also eliminates the use of multiplication at the symbol rate,
which helps to reduce the overall power consumption of the receiver unit. At a clock
frequency of 137 MHz, the detector achieves a throughput of over 3 Gbps making it
suitable to low-latency wireless standards such as the IEEE 802.11ac. A potential area
for future research is to implement the detector using a different sorting algorithm,
such as the multi-cycle winner path extension, in order to further explore latency,
power, and area tradeoffs.
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