Skip to main content
Log in

Rock Image Segmentation of Improved Semi-supervised SVM–FCM Algorithm Based on Chaos

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In the process of petroleum resource exploitation, porosity is the key parameter to evaluate reservoir fluid fluidity. Rock image segmentation is a challenging task due to the complex geological structure, unevenness, noise, etc. In order to solve the above problem, the improved semi-supervised SVM–FCM algorithm based on chaos (CSVM–FCM) is proposed to segment rock images in the paper. Firstly, the chaotic map is embedded into the PSO algorithm, then the improved PSO is used to find the optimal parameter configuration of the SVM model, and the binary initial segmentation of the rock image is realized. Finally, the semi-supervised FCM algorithm based on the objective function improvement is implemented to further segment the image, and segment the pores and rocks. In order to prove the superiority of the method, the method was compared with several other methods. The experimental results show that the method proposed in this paper has better segmentation effect, high precision and good performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. K. Adem, S. Kiliçarslan, O. Cömert, Classification and diagnosis of cervical cancer with softmax classification with stacked autoencoder. Expert Syst. Appl. 115, 557 (2019)

    Article  Google Scholar 

  2. S. Alleaume, K. Ose, M. Teisseire, M. Ndiath, D. Ienco, L. Khiali, Detection of spatio-temporal evolutions on multi-annual satellite image time series: a clustering based approach. Int. J. Appl. Earth Obs. Geoinf. 74, 103 (2018)

    Google Scholar 

  3. O.N. Almasi, M.H. Khooban, A parsimonious SVM model selection criterion for classification of real-world data sets via an adaptive population-based algorithm. Neural Comput. Appl. 30, 3421 (2018)

    Article  Google Scholar 

  4. S. Arora, P. Anand, Binary butterfly optimization approaches for feature selection. Expert Syst. Appl. 116, 147 (2019)

    Article  Google Scholar 

  5. A. Arshad, S. Riaz, L. Jiao, A. Murthy, The empirical study of semi-supervised deep fuzzy c-mean clustering for software fault prediction. IEEE Access 6, 47047 (2018)

    Article  Google Scholar 

  6. T. Celik, H.K. Lee, Comments on ‘a robust fuzzy local information C-means clustering algorithm’. IEEE Trans. Image Process. 22, 1258 (2013)

    Article  MathSciNet  Google Scholar 

  7. A. Cerepi, L. Humbert, R. Burlot, Petrophysical properties of porous medium from Petrographic Image Analysis data. Colloids Surf. A Physicochem. Eng. Asp. 187–188, 233 (2001)

    Article  Google Scholar 

  8. J.S. Chou, A.D. Pham, Smart artificial firefly colony algorithm-based support vector regression for enhanced forecasting in civil engineering. Comput. Civ. Infrastruct. Eng. 30, 715 (2015)

    Article  Google Scholar 

  9. L.Y. Chuang, C.H. Yang, J.C. Li, Chaotic maps based on binary particle swarm optimization for feature selection. Appl. Soft Comput. J. 11, 239 (2011)

    Article  Google Scholar 

  10. J.C. Dunn, A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters. J. Cybern. 3, 32 (1973)

    Article  MathSciNet  Google Scholar 

  11. R. Falcón, G. Jeon, R. Bello, J. Jeong, Rough clustering with partial supervision. Stud. Comput. Intell. 174, 137 (2009)

    MATH  Google Scholar 

  12. M. Fatehi, H.H. Asadi, Application of semi-supervised fuzzy c-means method in clustering multivariate geochemical data, a case study from the Dalli Cu-Au porphyry deposit in central Iran. Ore Geol. Rev. 81, 245 (2017)

    Article  Google Scholar 

  13. M. Gogebakan, H. Erol, A new semi-supervised classification method based on mixture model clustering for classification of multispectral data. J. Indian Soc. Remote Sens. 46, 1323 (2018)

    Article  Google Scholar 

  14. M. Gong, L. Su, M. Jia, W. Chen, Fuzzy clustering with a modified MRF energy function for change detection in synthetic aperture radar images. IEEE Trans. Fuzzy Syst. 22, 98 (2014)

    Article  Google Scholar 

  15. L. He, A.K. Nandi, X. Jia, Y. Zhang, H. Meng, T. Lei, Significantly fast and robust fuzzy c-means clustering algorithm based on morphological reconstruction and membership filtering. IEEE Trans. Fuzzy Syst. 26, 3027 (2018)

    Article  Google Scholar 

  16. W.Y. Hsu, Improved watershed transform for tumor segmentation: application to mammogram image compression. Expert Syst. Appl. 39, 3950 (2012)

    Article  Google Scholar 

  17. R.A. Ibrahim, M.A. Elaziz, S. Lu, Chaotic opposition-based grey-wolf optimization algorithm based on differential evolution and disruption operator for global optimization. Expert Syst. Appl. 108, 1 (2018)

    Article  Google Scholar 

  18. M. Kafai, K. Eshghi, CROification: accurate kernel classification with the efficiency of sparse linear SVM. IEEE Trans. Pattern Anal. Mach. Intell. 41, 34 (2019)

    Article  Google Scholar 

  19. S.R. Kannan, S. Ramathilagam, R. Devi, A. Sathya, Robust kernel FCM in segmentation of breast medical images. Expert Syst. Appl. 38, 4382 (2011)

    Article  Google Scholar 

  20. M.-C. Kao, F.-J. Kao, A. Gogoi, P.H.J. Mercier, D.M. Kingston, A. Ridsdale, W.-C. Kuo, A. Stolow, A.F. Pegoraro, Direct mineralogical imaging of economic ore and rock samples with multi-modal nonlinear optical microscopy. Sci. Rep. 8, 1 (2018)

    Article  Google Scholar 

  21. G. Kereszturi, L.N. Schaefer, W.K. Schleiffarth, J. Procter, R.R. Pullanagari, S. Mead, B. Kennedy, Integrating airborne hyperspectral imagery and LiDAR for volcano mapping and monitoring through image classification. Int. J. Appl. Earth Obs. Geoinf. 73, 323 (2018)

    Article  Google Scholar 

  22. S.N. Kumar, A.L. Fred, P.S. Varghese, Suspicious lesion segmentation on brain, mammograms and breast MR images using new optimized spatial feature based super-pixel fuzzy c-means clustering. J. Digit. Imaging (2018). https://doi.org/10.1007/s10278-018-0149-9

    Article  Google Scholar 

  23. C. Li, X. An, R. Li, A chaos embedded GSA-SVM hybrid system for classification. Neural Comput. Appl. 26, 713 (2015)

    Article  Google Scholar 

  24. I.A. Lima Neto, M.A.R. Ceia, R.M. Misságia, G.L.P. Oliveira, V.H. Santos, R.P.R. Paranhos, N.L. Archilha, Testing and evaluation of 2D/3D digital image analysis methods and inclusion theory for microporosity and S-wave prediction in carbonates. Mar. Pet. Geol. 97, 592 (2018)

    Article  Google Scholar 

  25. S.D. Mai, L.T. Ngo, Multiple kernel approach to semi-supervised fuzzy clustering algorithm for land-cover classification. Eng. Appl. Artif. Intell. 68, 205 (2018)

    Article  Google Scholar 

  26. R. Přikryl, Assessment of rock geomechanical quality by quantitative rock fabric coefficients: limitations and possible source of misinterpretations. Eng. Geol. 87, 149 (2006)

    Article  Google Scholar 

  27. R.A. Ramlee, S.A.R. Al Haddad, A. Khmag, F.L. Malallah, N. Kamarudin, Natural image noise removal using nonlocal means and hidden Markov models in transform domain. Vis. Comput. 34, 1661 (2017)

    Google Scholar 

  28. R. Samet, S.E. Amrahov, A.H. Ziroglu, Fuzzy rule-based image segmentation technique for rock thin section images, in 2012 3rd Int. Conf. Image Process. Theory, Tools Appl. IPTA 2012 402 (2012)

  29. G.I. Sayed, A. Darwish, A.E. Hassanien, A new chaotic whale optimization algorithm for features selection. J. Classif. 35, 300 (2018)

    Article  MathSciNet  Google Scholar 

  30. P. Smal, P. Gouze, O. Rodriguez, An automatic segmentation algorithm for retrieving sub-resolution porosity from X-ray tomography images. J. Pet. Sci. Eng. 166, 198 (2018)

    Article  Google Scholar 

  31. C. Stutz, T.A. Runkler, Classification and prediction of road traffic using application-specific fuzzy clustering. IEEE Trans. Fuzzy Syst. 10, 297 (2002)

    Article  Google Scholar 

  32. G.G. Wang, L. Guo, A.H. Gandomi, G.S. Hao, H. Wang, Chaotic Krill Herd algorithm. Inf. Sci. (NY) 274, 17 (2014)

    Article  MathSciNet  Google Scholar 

  33. X. Wang, J. Yang, X. Teng, W. Xia, R. Jensen, Feature selection based on rough sets and particle swarm optimization. Pattern Recognit. Lett. 28, 459 (2007)

    Article  Google Scholar 

  34. X. Wang, S. Guan, L. Hua, B. Wang, X. He, Classification of spot-welded joint strength using ultrasonic signal time-frequency features and PSO-SVM method. Ultrasonics 91, 161 (2019)

    Article  Google Scholar 

  35. S.K. Warfield, M. Alcaniz, R. Kikinis, A.U.J. Mewes, V. Grau, Improved watershed transform for medical image segmentation using prior information. IEEE Trans. Med. Imaging 23, 447 (2004)

    Article  Google Scholar 

  36. Q. Wu, A self-adaptive embedded chaotic particle swarm optimization for parameters selection of Wv-SVM. Expert Syst. Appl. 38, 184 (2011)

    Article  Google Scholar 

  37. X. Xu, S. Xu, L. Jin, E. Song, Characteristic analysis of Otsu threshold and its applications. Pattern Recognit. Lett. 32, 956 (2011)

    Article  Google Scholar 

  38. L. Zhang, Q. Zhang, B. Du, X. Huang, Y.Y. Tang, D. Tao, Simultaneous spectral-spatial feature selection and extraction for hyperspectral images. IEEE Trans. Cybern. 48, 16 (2018)

    Article  Google Scholar 

  39. Q. Zhang, W. Lu, R. Wang, G. Li, Digital image splicing detection based on Markov features in block DWT domain. Multimed. Tools Appl. 77, 31239 (2018)

    Article  Google Scholar 

  40. W. Zhang, W. Li, J. Yan, L. Yu, C. Pan, Adaptive threshold selection for background removal in fringe projection profilometry. Opt. Lasers Eng. 90, 209 (2017)

    Article  Google Scholar 

  41. Z. Zhang, Y. Qin, L. Jia, X. Chen, Visibility graph feature model of vibration signals: a novel bearing fault diagnosis approach. Materials (Basel) 11, 2262 (2018)

    Article  Google Scholar 

  42. J. Zhao, L. Yin, W. Guo, Stress-seepage coupling of cataclastic rock masses based on digital image technologies. Rock Mech. Rock Eng. 51, 2355 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haibo Liang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, H., Zou, J. Rock Image Segmentation of Improved Semi-supervised SVM–FCM Algorithm Based on Chaos. Circuits Syst Signal Process 39, 571–585 (2020). https://doi.org/10.1007/s00034-019-01088-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-019-01088-z

Keywords

Navigation