Skip to main content
Log in

Quasi-maximum-Likelihood Estimator of PPS on the Uniform Linear Array

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, an idea from the quasi-maximum-likelihood (QML) algorithm has been applied to estimation of the direction of arrival (DOA) and parameters of the polynomial phase signals (PPS) impinging on the uniform linear array. The algorithm uses a search over a set of possible DOA values. For considered value, the DOA is compensated and resulted signal parameters are estimated using the original QML approach. In this way, several sets of potential estimates are obtained. Optimal DOA and PPS parameters belong to set that maximizes the proposed cost function. In the proposed approach, parameters are estimated using 2-D search over DOA and window widths used for calculation of the short Fourier transform in the QML that is an important advantage with respect to existing strategies like, for example, the polynomial beamformer requiring multi-dimensional or metaheuristic search strategies. Numerical validation of the proposed approach for both mono- and multi-component signals is provided in the paper. Both far- and near-field scenarios are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A. Amar, Efficient estimation of a narrow-band polynomial phase signal impinging on a sensor array. IEEE Trans. Signal Process. 58(2), 923–927 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. A. Amar, A. Leshem, A.J. van der Veen, A low complexity blind estimator of narrowband polynomial phase signals. IEEE Trans. Signal Process. 58(9), 4674–4683 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. A. Belouchrani, M.G. Amin, Blind source separation based on time–frequency signal representations. IEEE Trans. Signal Process. 46(11), 2888–2897 (1998)

    Article  Google Scholar 

  4. A. Belouchrani, M.G. Amin, N. Thirion-Moreau, Y.D. Zhang, Source separation and localization using time–frequency distributions: an overview. IEEE Signal Process. Mag. 30(6), 97–107 (2013)

    Article  Google Scholar 

  5. B. Boashash, Time–Frequency Signal Analysis and Processing: A Comprehensive Reference (Academic Press, Salt Lake City, 2003)

    Google Scholar 

  6. B. Boashash, N.A. Khan, T. Ben-Jabeur, Time–frequency features for pattern recognition using high-resolution TFDs: a tutorial review. Digit. Signal Process. 40, 1–30 (2015)

    Article  MathSciNet  Google Scholar 

  7. S. Djukanović, M. Simeunović, I. Djurović, Efficient parameter estimation of polynomial-phase signals impinging on a sensor array, in 2012 Mediterranean Conference on Embedded Computing (MECO) (2012), pp. 116–119

  8. S. Djukanović, M. Simeunović, I. Djurović, A low-complexity robust estimation of multiple wideband polynomial-phase signals in sensor array, in 2013 8th International Symposium on Image and Signal Processing and Analysis (ISPA) (IEEE, 2013), pp. 308–313

  9. I. Djurović, On parameters of the QML PPS estimator. Signal Process. 116, 1–6 (2015)

    Article  Google Scholar 

  10. I. Djurović, S. Djukanović, M. Simeunović, P. Raković, B. Barkat, An efficient joint estimation of wideband polynomial-phase signal parameters and direction-of-arrival in sensor array. EURASIP J. Adv. Signal Process. 2012(1), 1–10 (2012)

    Article  Google Scholar 

  11. I. Djurović, M. Simeunović, Review of the quasi maximum likelihood estimator for polynomial phase signals. Digit. Signal Process. 72, 59–74 (2018)

    Article  Google Scholar 

  12. I. Djurović, M. Simeunović, S. Djukanović, P. Wang, A hybrid CPF-HAF estimation of polynomial-phase signals: detailed statistical analysis. IEEE Trans. Signal Process. 60(10), 5010–5023 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. I. Djurović, M. Simeunović, B. Lutovac, Are genetic algorithms useful for the parameter estimation of FM signals? Digit. Signal Process. 22(6), 1137–1144 (2012)

    Article  MathSciNet  Google Scholar 

  14. I. Djurović, LJ. Stanković, Quasi-maximum-likelihood estimator of polynomial phase signals. IET Signal Process. 8(4), 347–359 (2014)

    Article  Google Scholar 

  15. I. Djurović, T. Thayaparan, LJ. Stanković, Adaptive local polynomial Fourier transform in ISAR. EURASIP J. Appl. Signal Process. 2006, 129–129 (2006)

    Google Scholar 

  16. I. Djurović, T. Thayaparan, LJ. Stanković, SAR imaging of moving targets using polynomial Fourier transform. IET Signal Process. 2(3), 237–246 (2008)

    Article  Google Scholar 

  17. S. Elouaham, R. Latif, A. Dliou, M. Laaboubi, R.F.M. Maoulainie, Parametric and non parametric time–frequency analysis of biomedical signals. Int. J. Adv. Comput. Sci. Appl. 4(1), 74–79 (2013)

    Google Scholar 

  18. A.B. Gershman, M. Pesavento, M.G. Amin, Estimating parameters of multiple wideband polynomial-phase sources in sensor arrays. IEEE Trans. Signal Process. 49(12), 2924–2934 (2001)

    Article  Google Scholar 

  19. A. Hassanien, A.B. Gershman, K.M. Wong, Estimating the parameters of multiple wideband polynomial-phase signals in sensor arrays using spatial time–frequency distributions, in IEEE International Conference on Acoustics, Speech and Signal Processing-ICASSP’07, vol. 2 (2007), pp. 1069–1072

  20. Y.D. Huang, M. Barkat, Near-field multiple source localization by passive sensor array. IEEE Trans. Antennas Propag. 39(7), 968–975 (1991)

    Article  Google Scholar 

  21. L. Inza, J. Mars, J.P. Métaxian, G.S. O’Brien, O. Macedo, Seismo-volcano source localization with triaxial broad-band seismic array. Geophys. J. Int. 187(1), 371–384 (2011)

    Article  Google Scholar 

  22. C. Ioana, J.I. Mars, A. Serbanescu, S. Stanković, Time–frequency-phase tracking approach: application to underwater signals in a passive context, in 2010 IEEE International Conference on Acoustics, Speech and Signal Processing (IEEE, 2010), pp. 5634–5637

  23. C. Ioana, A. Quinquis, Y. Stephan, Feature extraction from underwater signals using time–frequency warping operators. IEEE J. Ocean. Eng. 31(3), 628–645 (2006)

    Article  Google Scholar 

  24. J.C. Lagarias, J.A. Reeds, M.H. Wright, P.E. Wright, Convergence properties of the Nelder–Mead simplex method in low dimensions. SIAM J. Optim. 9, 112–147 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  25. C. Li, M. Liu, P. Wang, H. Wang, Subspace method to estimate parameters of wideband polynomial-phase signals in sensor arrays, in International Conference on Estimation, Detection and Information Fusion (ICEDIF) (2015), pp. 186–189

  26. N. Linh-Trung, A. Belouchrani, K. Abed-Meraim, B. Boashash, Separating more sources than sensors using time–frequency distributions. EURASIP J. Appl. Signal Process. 2005, 2828–2847 (2005)

    MATH  Google Scholar 

  27. S. Liu, Y.D. Zhang, T. Shan, Detection of weak astronomical signals with frequency-hopping interference suppression. Digit. Signal Process. 72, 1–8 (2018)

    Article  MathSciNet  Google Scholar 

  28. S. Liu, Y.D. Zhang, T. Shan, R. Tao, Structure-aware Bayesian compressive sensing for frequency-hopping spectrum estimation with missing observations. IEEE Trans. Signal Process. 66(8), 2153–2166 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  29. P. O’Shea, On refining polynomial phase signal parameter estimates. IEEE Trans. Aerosp. Electron. Syst. 46(3), 978–987 (2010)

    Article  Google Scholar 

  30. S. Peleg, B. Porat, The Cramer–Rao lower bound for signals with constant amplitude and polynomial phase. IEEE Trans. Signal Process. 39(3), 749–752 (1991)

    Article  Google Scholar 

  31. P. Raković, M. Simeunović, I. Djurović, On improvement of joint estimation of DOA and PPS coefficients impinging on ULA. Signal Process. 134, 209–213 (2017)

    Article  Google Scholar 

  32. B. Ristić, B. Boashash, Comments on The Cramer–Rao lower bounds for signals with constant amplitude and polynomial phase. IEEE Trans. Signal Process. 46(6), 1708–1709 (1998)

    Article  Google Scholar 

  33. LJ. Stanković, M. Daković, T. Thayaparan, Time–Frequency Signal Analysis with Applications (Artech House, Norwood, 2014)

  34. LJ. Stanković, I. Djurović, S. Stanković, M. Simeunović, S. Djukanović, M. Daković, Instantaneous frequency in time–frequency analysis: enhanced concepts and performance of estimation algorithms. Digit. Signal Process. 35, 1–13 (2014)

    Article  Google Scholar 

  35. O. Yilmaz, S. Rickard, Blind separation of speech mixtures via time–frequency masking. IEEE Trans. Signal Process. 52(7), 1830–1847 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  36. X. Yuan, Direction-finding wideband linear FM sources with triangular arrays. IEEE Trans. Aerosp. Electron. Syst. 48(3), 2416–2425 (2012)

    Article  Google Scholar 

  37. X. Yuan, Estimating the DOA and the polarization of a polynomial-phase signal using a single polarized vector-sensor. IEEE Trans. Signal Process. 60(3), 1270–1282 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marko Simeunović.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 CRLB Derivation

The CRLB evaluation for signal model considered in the paper is addressed briefly. The CRLB derivations for case of a simplified array signal model are available in [18].

Our interest is to calculate the CRLB of parameter vector \(\mathbf {E} =[a_{0},a_{1},\dots ,a_{P}\), \(A,\tau ]\). Elements of vector \(\mathbf {E}\) are denoted by \(\mathbf {E}_{i}=a_{i}\), for \(i\in 0,\dots ,P\), \(E_{P+1}=A\), \(E_{P+2}=\tau \). The CRLB of \(\mathbf {E}_{i}\) is a diagonal element of the inverse Fisher information matrix \(\mathbf {F}\) on position \(\mathbf {F}_{i,i}\)

$$\begin{aligned} \text {CRLB}\{{\mathbf {E}}_{i}\}=(\mathbf {F}^{-1})_{i,i}. \end{aligned}$$
(12)

Elements of the Fisher information matrix are second-order partial derivatives of the log-likelihood function. For details related to the Fisher matrix determination, refer to [18, 30, 32]. In the following, we give summary of our derivations related to this matrix with \(F_{i,j}\) as the (ij)th element of \((P+3)\times (P+3)\) matrix \(\mathbf {F}\):

$$\begin{aligned} F_{i,j}= & {} 2\frac{A^{2}}{\sigma ^{2}}\nonumber \\&\times \left\{ \begin{array} [c]{cc} NM, &{} i=j=P+1\\ 0, &{} i=P+1\oplus j=P+1\\ \sum \limits _{n=0}^{N-1}\sum \limits _{k=1}^{M-1}\left( \sum \nolimits _{p=1}^{P} a_{p}pk(n-k\tau )^{p-1}(\varDelta t)^{p}\right) ^{2}, &{} i=j=P+2\\ \begin{array} [c]{c} \sum \limits _{n=0}^{N-1}\sum \limits _{k=1}^{M-1}(n-k\tau )^{\min (i,j)}(\varDelta t)^{\min (i,j)}\\ \times \,\sum \limits _{p=1}^{P}a_{p}pk(n-k\tau )^{p-1}(\varDelta t)^{p}, \end{array} &{} \begin{array} [c]{c} (i=P+2,j\le P)\\ \vee (i\le P,j=P+2) \end{array} \\ (\varDelta t)^{(i+j)}\sum \limits _{n=0}^{N-1}\sum \limits _{k=1}^{M-1} (n-k\tau )^{(i+j)}, &{} i\le P,\quad j\le P. \end{array} \right. \nonumber \\ \end{aligned}$$
(13)

Due to terms involving the ISD, we have evaluated the CRLB from (12) and (13) numerically.

1.2 NMS Method

Parameters of the proposed algorithm are refined in the final step using the NMS method. The NMS method finds minimum of the objective function using operations such as reflection, expansion, contraction and shrinking. Since our goal is function maximization, optimization function passed to the NMS method is \(\varGamma (\mathbf {g})=1/J(\upsilon ;b_{1},\dots ,b_{P}),\) where \(\mathbf {g}=[\upsilon ,b_{1},\dots ,b_{P}]\). The NMS method is summarized in Algorithm 4.

Standard values for the reflection, expansion, contraction and shrink coefficients are \(\alpha =1\), \(\gamma =2\), \(\rho =0.5\) and \(\varsigma =0.5\). Note that fminsearch function is MATLAB realization of the NMS method.

figure d

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Djurović, I., Simeunović, M. & Raković, P. Quasi-maximum-Likelihood Estimator of PPS on the Uniform Linear Array. Circuits Syst Signal Process 38, 4874–4889 (2019). https://doi.org/10.1007/s00034-019-01095-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-019-01095-0

Keywords

Navigation