Skip to main content
Log in

A Novel Very Low-Complexity Multi-valued Logic Comparator in Nanoelectronics

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Using multi-valued logic (MVL) can reduce chip connections, which can have a direct effect on the chip area and connections power consumption. In the recent years, due to the high capability of nanotechnology in designing MVLs, some researchers have focused on this field. In designing MVL circuits, the low-complexity design is of great importance to fulfill the MVL aim. In this paper, a very low-complexity comparator for the MVL is proposed based on the multi-threshold voltage in CNTFETs. The proposed comparator in the 1-bit greater function only needs four transistors for all multi-valued logics; this results in a considerable transistor count reduction in comparison with the pervious works relying on 32 and 50 transistors in a ternary to quaternary case, respectively. Also, the number of 1-bit comparators is reduced from 50 and 74 transistors for the ternary to quaternary cases in the previous works to 12 in the proposed design. Additionally, the multi-digit comparator using the novel digit comparator is proposed. The simulation results using the Stanford 32 nm CNTFET library in HSPICE confirm the proper operation of the proposed comparator with the same range in PDP, in comparison with the previous works.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. A. Akturk, G. Pennington, N. Goldsman, A. Wickenden, Electron transport and velocity oscillations in a carbon nanotube. IEEE Trans. Nanotechnol. 6(4), 469–474 (2007)

    Article  Google Scholar 

  2. T. Araki, H. Tatsumi, M. Mukaidono, F. Yamamoto, Minimization of incompletely specified regular ternary logic functions and its application to fuzzy switching functions, in Proceedings of the IEEE International Symposium on Multiple-Valued Logic, (May 1998), pp. 289–296

  3. P.C. Balla, A. Antoniou, Low power dissipation MOS ternary logic family. IEEE J. Solid-State Circuits 19(5), 739–749 (1984)

    Article  Google Scholar 

  4. K.W. Current, Algorithmic analogue-to-quaternary converter circuit using current-mode CMOS. Electron. Lett. 28(12), 1111–1112 (1992)

    Article  Google Scholar 

  5. K.W. Current, A CMOS quaternary threshold logic full adder circuit with transparent latch, in Proceedings of the International Symposium on Multiple-Valued Logic, (May 1990), pp. 168–173

  6. K.W. Current, A CMOS quaternary latch. Electron. Len. 25(13), 856–858 (1989)

    Article  Google Scholar 

  7. K.W. Current, Application of quaternary logic to the design of a proposed discrete cosine transform chip. Int. J. Electron. 67(5), 687–701 (1989)

    Article  Google Scholar 

  8. K.W. Current, M.E. Hurlston, A bidirectional current-mode CMOS multiple-valued logic memory circuit, in Proceedings of the International Symposium on Multiple-Valued Logic, (May 1991), pp. 196–202

  9. K.W. Current, F.A. Edwards, D.A. Freitas, A CMOS multiple valued logic test chip, in Proceedings of the International Symposium on Multiple-Valued Logic, (May 1987), pp. 16–19

  10. K.W. Current, D.A. Freitas, F.A. Edwards, CMOS quaternary threshold logic full adder circuits. in Proceedings of the International Symposium on Multiple-Valued Logic, (May 1985), pp. 318–322

  11. K.W. Current, Current-mode CMOS multiple-valued logic circuits. IEEE J. Solid-State Circuits 29(2), 95–107 (1994)

    Article  Google Scholar 

  12. A. Daraei, S.A. Hosseini, Novel energy-efficient and high-noise margin quaternary circuits in nanoelectronics. AEU Int. J. Electron. Commun. 105, 145–162 (2019)

    Article  Google Scholar 

  13. J. Deng, H.-S.P. Wong, A compact SPICE model for carbon-nanotube field-effect transistors including nonidealities and its application—Part I: model of the intrinsic channel region. IEEE Trans. Electron Device 54(12), 3186–3194 (2007)

    Article  Google Scholar 

  14. J. Deng, H.-S.P. Wong, A compact SPICE model for carbon-nanotube field-effect transistors including nonidealities and its application—Part II: full device model and circuit performance benchmarking. IEEE Trans. Electron. Device 54(12), 3195–3205 (2007)

    Article  Google Scholar 

  15. S.A. Ebrahimi, M.R. Reshadinezhad, A. Bohlooli, M. Shahsavari, Efficient CNTFET-based design of quaternary logic gates and arithmetic circuits. Microelectron. J. 53, 1177–1193 (2016)

    Article  Google Scholar 

  16. D.A. Freitas, K.W. Current, A quaternary logic encoder-decoder circuit design using CMOS, in Proceedings of the International Symposium on Multiple-Valued Logic, (May 1983), pp. 190–195

  17. D.A. Freitas, K.W. Current, A CMOS current comparator circuit. Electron. Len. 19(17), 695–697 (1983)

    Article  Google Scholar 

  18. K.J. Gan, J.J. Lu, W.K. Yeh, Y.H. Chen, Y.W. Chen, Multiple-valued logic design based on the multiple-peak BiCMOSNDR circuits. Eng. Sci. Technol. Int. J. 19, 888–893 (2016)

    Article  Google Scholar 

  19. H. Hashempour, F. Lombardi, Device model for ballistic CNFETs using the first conducting band. IEEE Des. Test Comput. 25(2), 178–186 (2008)

    Article  Google Scholar 

  20. A. Heung, H.T. Mouftah, Depletion/enhancement CMOS for a lower power family of three-valued logic circuits. IEEE J. Solid-State Circuit 20(2), 609–616 (1985)

    Article  Google Scholar 

  21. S. Kawahito, M. Kameyama, T. Higuchi, H. Yamada, A 32 × 32-bit multiplier using multiple-valued MOS current-mode circuits. IEEE J. Solid-State Cimuits 23(1), 124–132 (1988)

    Article  Google Scholar 

  22. P. Keshavarzian, R. Sarikhani, A novel CNTFET-based ternary full adder. Circuits Syst. Signal Process. 33(3), 665–679 (2013)

    Article  Google Scholar 

  23. J. Liang, L. Chen, J. Han, F. Lombardi, Design and evaluation of multiple valued logic gates using pseudo N-type carbon nanotube FETs. IEEE Trans. Nanotechnol. 13(4), 695–708 (2014)

    Article  Google Scholar 

  24. Y. Lin, J. Appenzeller, J. Knoch, P. Avouris, High-performance carbon nanotube field-effect transistor with tunable polarities. IEEE Trans. Nanotechnol. 4(5), 481–489 (2005)

    Article  Google Scholar 

  25. S. Lin, Y.B. Kim, F. Lombardi, The CNTFET-based design of ternary logic gates and arithmetic circuits. IEEE Trans. Nanotechnol. 10(2), 217–225 (2011)

    Article  Google Scholar 

  26. M.H. Moaiyeri, R.F. Mirzaee, A. Doostaregan, K. Navi, O. Hashemipour, A universal method for designing low-power carbon nanotube FET-based multiple-valued logic circuits. IET Comput. Digit. Tech. 7(4), 167–181 (2013)

    Article  Google Scholar 

  27. M. Mukaidono, Regular ternary logic functions—ternary logic functions suitable for treating ambiguity. IEEE Trans. Comput. 35(2), 179–183 (1986)

    Article  Google Scholar 

  28. A. Raychowdhury, K. Roy, Carbon-nanotube-based voltage-mode multiple-valued logic design. IEEE Trans. Nanotechnol. 4(2), 168–179 (2005)

    Article  Google Scholar 

  29. D.A. Rich, A survey of multivalued memories. IEEE Trans. Comput. 35(2), 99–106 (1986)

    Article  Google Scholar 

  30. E. Roosta, S.A. Hosseini, A novel multiplexer-based quaternary full adder in nanoelectronics. Circuits Syst. Signal Process., (21 Jan. 2019). https://doi.org/10.1007/s00034-019-01039-8

    Article  Google Scholar 

  31. M. Shahangian, S.A. Hosseini, S.H. Pishgar Komleh, Design of a multi-digit binary-to-ternary converter based on CNTFETs. Circuits Syst. Signal Process38(6), 2544–2563 (2019)

    Article  Google Scholar 

  32. E. Shahrom, S.A. Hosseini, A new low power multiplexer based ternary multiplier using CNTFETs. AEU Int. J. Electron. Commun. 93, 191–207 (2018)

    Article  Google Scholar 

  33. K.C. Smith, The prospects for multivalued logic: a technology and applications view. IEEE Trans. Comput. 30(9), 619–634 (1981)

    Article  MathSciNet  Google Scholar 

  34. Stanford University CNFET model Website. Stanford University, Stanford, CA (2008) (online). http://nano.stanford.edu/model.php?id=23

  35. C. Vudadha, P.S. Phaneendra, G. Makkena, V. Sreehari, N.M. Muthukrishnan, M.B. Srinivas, Design of CNFET based ternary comparator using grouping logic, in IEEE Faible Tension Faible Consommation 14, 808 (June 2012)

  36. Y. Yasuda, Y. Tokuda, S. Taima, K. Pak, T. Nakamura, A. Yoshida, Realization of quaternary logic circuits by n-channel MOS devices. IEEE J. Solid-State Circuits 21(1), 162–168 (1986)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seied Ali Hosseini.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseini, S.A., Etezadi, S. A Novel Very Low-Complexity Multi-valued Logic Comparator in Nanoelectronics. Circuits Syst Signal Process 39, 223–244 (2020). https://doi.org/10.1007/s00034-019-01158-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-019-01158-2

Keywords

Navigation