Skip to main content
Log in

Participation Factors for Singular Systems of Differential Equations

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In this article, we provide a method to measure the participation of system eigenvalues in system states, and vice versa, for a class of singular linear systems of differential equations. This method deals with eigenvalue multiplicities and covers all cases by taking into account both the algebraic and geometric multiplicity of the eigenvalues of the system matrix pencil. A Möbius transform is applied to determine the relative contributions associated with the infinite eigenvalue that appears because of the singularity of the system. The paper is a generalization of the conventional participation analysis, which provides a measure for the coupling between the states and the eigenvalues of systems of ordinary differential equations with distinct eigenvalues. Numerical examples are given including a classical DC circuit and a 2-bus power system dynamic model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. S.L. Campbell, Singular Systems of Differential Equations, vol. 1 (Pitman, San Francisco, 1980)

    MATH  Google Scholar 

  2. S.L. Campbell, Singular Systems of Differential Equations, vol. 2 (Pitman, San Francisco, 1982)

    MATH  Google Scholar 

  3. L. Dai, in Singular Control Systems, Lecture Notes in Control and Information Sciences, ed. by M. Thoma, A. Wyner (Springer, Berlin, 1988)

  4. J.H. Chow, Power System Coherency and Model Reduction, vol. 94, Power Electronics and Power Systems (Springer, New York, 2013)

    Book  Google Scholar 

  5. I.K. Dassios, On non-homogeneous linear generalized linear discrete time systems. Circuits Syst. Signal Process. 31(5), 1699 (2012). https://doi.org/10.1007/s00034-012-9400-7

    Article  MathSciNet  MATH  Google Scholar 

  6. I.K. Dassios, G. Kalogeropoulos, On a non-homogeneous singular linear discrete time system with a singular matrix pencil. Circuits Syst. Signal Process. 32(4), 1615 (2013). https://doi.org/10.1007/s00034-012-9541-8

    Article  MathSciNet  Google Scholar 

  7. I.K. Dassios, Optimal solutions for non-consistent singular linear systems of fractional nabla difference equations. Circuits Syst. Signal Process. 34(6), 1769–1797 (2015)

    Article  Google Scholar 

  8. I. Dassios, Stability and robustness of singular systems of fractional nabla difference equations. Circuits Syst. Signal Process. 36(1), 49–64 (2017)

    Article  MathSciNet  Google Scholar 

  9. I. Dassios, D. Baleanu, G. Kalogeropoulos, On non-homogeneous singular systems of fractional nabla difference equations. Appl. Math. Comput. 227, 112–131 (2014)

    MathSciNet  MATH  Google Scholar 

  10. I. Dassios, D. Baleanu, Optimal Solutions for Singular Linear Systems of Caputo Fractional Differential Equations, Mathematical Methods in the Applied Sciences (Wiley, London, 2019)

    Google Scholar 

  11. I.K. Dassios, A practical formula of solutions for a family of linear non-autonomous fractional nabla difference equations. J. Comput. Appl. Math. 339, 317–328 (2018)

    Article  MathSciNet  Google Scholar 

  12. I.K. Dassios, D.I. Baleanu, Duality of singular linear systems of fractional nabla difference equations. Appl. Math. Model. 39(14), 4180–4195 (2015)

    Article  MathSciNet  Google Scholar 

  13. I. Dassios, D. Baleanu, Caputo and related fractional derivatives in singular systems. Appl. Math. Comput. 337, 591–606 (2018). https://doi.org/10.1016/j.amc.2018.05.005

    Article  MathSciNet  MATH  Google Scholar 

  14. I. Dassios, G. Tzounas, F. Milano, The Mobius transform effect in singular systems of differential equations. Appl. Math. Comput. 361, 338–353 (2019). https://doi.org/10.1016/j.amc.2019.05.047

    Article  MathSciNet  MATH  Google Scholar 

  15. R.F. Gantmacher, The Theory of Matrices I, II (Chelsea, New York, 1959)

    MATH  Google Scholar 

  16. F. Garofalo, L. Iannelli, F. Vasca, Participation factors and their connections to residues and relative gain array. The Proceedings of the IFAC World Congress 35(1), 125 (2002). https://doi.org/10.3182/20020721-6-ES-1901.00182

    Article  Google Scholar 

  17. A.M.A. Hamdan, Coupling measures between modes and state variables in power-system dynamics. Int. J. Control 43(3), 1029 (1986). https://doi.org/10.1080/00207178608933521

    Article  MathSciNet  MATH  Google Scholar 

  18. M. Liu, I. Dassios, F. Milano, On the stability analysis of systems of neutral delay differential equations. Circuits Syst. Signal Process. 38(4), 1639–1653 (2019)

    Article  MathSciNet  Google Scholar 

  19. M. Liu, I. Dassios, G. Tzounas, F. Milano, Stability analysis of power systems with inclusion of realistic-modeling of WAMS delays. IEEE Trans. Power Syst. 34(1), 627–636 (2019)

    Article  Google Scholar 

  20. F. Milano, I.K. Dassios, Primal and dual generalized eigenvalue problems for power systems small-signal stability analysis. IEEE Trans. Power Syst. 32(6), 4626 (2017). https://doi.org/10.1109/TPWRS.2017.2679128

    Article  Google Scholar 

  21. F. Milano, I.K. Dassios, Small-signal stability analysis for non-index 1 Hessenberg form systems of delay differential-algebraic equations. IEEE Trans. Circuits Syst. I: Regul. Pap. 63(9), 1521 (2016). https://doi.org/10.1109/TCSI.2016.2570944

    Article  MathSciNet  Google Scholar 

  22. F. Milano, Semi-implicit formulation of differential-algebraic equations for transient stability analysis. IEEE Trans. Power Syst. 31(6), 4534 (2016). https://doi.org/10.1109/TPWRS.2016.2516646

    Article  Google Scholar 

  23. M. Netto, Y. Susuki, L. Mili, Data-driven participation factors for nonlinear systems based on Koopman mode decomposition. IEEE Control Syst. Lett. 3(1), 198 (2019). https://doi.org/10.1109/LCSYS.2018.2871887

    Article  Google Scholar 

  24. F.L. Pagola, I.J. Perez-Arriaga, G.C. Verghese, On sensitivities, residues and participations: applications to oscillatory stability analysis and control. IEEE Trans. Power Syst. 4(1), 278 (1989). https://doi.org/10.1109/59.32489

    Article  Google Scholar 

  25. I.J. Perez-Arriaga, G.C. Verghese, F.C. Schweppe, Selective modal analysis with applications to electric power systems, part i: heuristic introduction. IEEE Trans. Power Appar. Syst. PAS–101(9), 3117 (1982). https://doi.org/10.1109/TPAS.1982.317524

    Article  Google Scholar 

  26. J. Qiu, K. Sun, T. Wang, H. Gao, Observer-based fuzzy adaptive event-triggered control for pure-feedback nonlinear systems with prescribed performance. IEEE Trans. Fuzzy Syst. (2019). https://doi.org/10.1109/TFUZZ.2019.2895560

    Article  Google Scholar 

  27. W.J. Rugh, Linear System Theory (Prentice Hall International, London, 1996)

    MATH  Google Scholar 

  28. K. Sun, S. Mou, J. Qiu, T. Wang, H. Gao, Adaptive fuzzy control for non-triangular structural stochastic switched nonlinear systems with full state constraints. IEEE Trans. Fuzzy Syst. (2018). https://doi.org/10.1109/TFUZZ.2018.2883374

    Article  Google Scholar 

  29. T. Tian, X. Kestelyn, O. Thomas, H. Amano, A.R. Messina, An accurate third-order normal form approximation for power system nonlinear analysis. IEEE Trans. Power Syst. 33(21), 2128 (2018). https://doi.org/10.1109/TPWRS.2017.2737462

    Article  Google Scholar 

  30. G.C. Verghese, I.J. Perez-Arriaga, F.C. Schweppe, Selective modal analysis with applications to electric power systems, part II: The dynamic stability problem. IEEE Trans. Power Appar. Syst. PAS–101(9), 3117 (1982). https://doi.org/10.1109/TPAS.1982.317525

    Article  Google Scholar 

  31. L. Zhang, C. Gao, Y. Liu, New research advance of variable structure control singular systems with time delays (2018). https://doi.org/10.12677/DSC.2018.74038

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Science Foundation Ireland (SFI), by funding Ioannis Dassios, Georgios Tzounas and Federico Milano, under Investigator Programme Grant No. SFI/15 /IA/3074.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioannis Dassios.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dassios, I., Tzounas, G. & Milano, F. Participation Factors for Singular Systems of Differential Equations. Circuits Syst Signal Process 39, 83–110 (2020). https://doi.org/10.1007/s00034-019-01183-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-019-01183-1

Keywords

Navigation