Skip to main content
Log in

A Variational Bayesian Approach for Identification of Time-Delay Markov Jump Autoregressive Exogenous Systems

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper is concerned with the identification problem of Markov jump autoregressive exogenous systems with unknown slow-varying time-delay. With the implementation of variational Bayesian inference approach, the distribution characteristics of local model parameters are obtained. Meanwhile, the transition probability matrix and the unknown time-delay are determined. Furthermore, a numerical example and a simulated continuous fermentation reactor example are performed to verify the effectiveness of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. In the following context, both the probability mass functions and probability density functions are expressed as p, without influencing the derivations and readers’ understanding.

References

  1. O. Cappé, Online EM algorithm for hidden Markov models. J. Comput. Graph. Stat. 20(3), 728–749 (2011)

    Article  MathSciNet  Google Scholar 

  2. S.P. Chatzis, D.I. Kosmopoulos, A variational Bayesian methodology for hidden Markov models utilizing Student’s-t mixtures. Pattern Recognit. 44(2), 295–306 (2011)

    Article  Google Scholar 

  3. F. Chen, H. Garnier, M. Gilson, Robust identification of continuous-time models with arbitrary time-delay from irregularly sampled data. J. Process Control 25, 19–27 (2015)

    Article  Google Scholar 

  4. J. Chen, B. Huang, F. Ding, Y. Gu, Variational Bayesian approach for ARX systems with missing observations and varying time-delays. Automatica 94, 194–204 (2018)

    Article  MathSciNet  Google Scholar 

  5. J. Chen, Y. Liu, Variational Bayesian-based iterative algorithm for ARX models with random missing outputs. Circuits Syst. Signal Process. 37, 1594–1608 (2018)

    Article  MathSciNet  Google Scholar 

  6. X. Chen, S. Zhao, F. Liu, Identification of time-delay Markov jump autoregressive exogenous systems with expectation-maximization algorithm. Int. J. Adapt. Control Signal Process. 31(12), 1920–1933 (2017)

    Article  MathSciNet  Google Scholar 

  7. E. Cinquemani, R. Porreca, G. Ferrari-Trecate, J. Lygeros, A general framework for the identification of jump Markov linear systems. In: IEEE Conference on Decision & Control, pp. 5737–5742 (2007)

  8. O.L.V. Costa, R.P. Marques, M.D. Fragoso, Discrete-Time Markov Jump Linear System (Springer, Heidelberg, 2004)

    MATH  Google Scholar 

  9. A.P. Dempster, N.M. Laird, D.B. Rubin, Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B (Methodol.) 39(1), 1–38 (1977)

    MathSciNet  MATH  Google Scholar 

  10. N.H. El-Farra, P.D. Christofides, Coordinating feedback and switching for control of hybrid nonlinear processes. AIChE J. 49(8), 2079–2098 (2003)

    Article  Google Scholar 

  11. L. Fan, H. Kodamana, B. Huang, Robust identification of switching Markov ARX models using EM algorithm. In: Proceedings of the 20th IFAC World Congress, vol. 50(1), pp. 9772–9777 (2017)

  12. J.K. Gugaliya, R.D. Gudi, S. Lakshminarayanan, Multi-model decomposition of nonlinear dynamics using a fuzzy-CART approach. J. Process Control 15(4), 417–434 (2005)

    Article  Google Scholar 

  13. M.A. Henson, D.E. Seborg, Nonlinear control strategies for continuous fermenters. Chem. Eng. Sci. 47(4), 821–835 (1992)

    Article  Google Scholar 

  14. X. Jin, B. Huang, D.S. Shook, Multiple model LPV approach to nonlinear process identification with EM algorithm. J. Process Control 21(1), 182–193 (2011)

    Article  Google Scholar 

  15. X. Jin, B. Huang, Identification of switched Markov autoregressive eXogenous systems with hidden switching state. Automatica 48(2), 436–441 (2012)

    Article  MathSciNet  Google Scholar 

  16. Q. Lin, R. Loxton, C. Xu, K.L. Teo, Parameter estimation for nonlinear time-delay systems with noisy output measurements. Automatica 60, 48–56 (2015)

    Article  MathSciNet  Google Scholar 

  17. S. Liu, J. Jia, Y.D. Zhang, Y. Yang, Image reconstruction in electrical impedance tomography based on structure-aware sparse Bayesian learning. IEEE Trans. Med. Imaging 37(9), 2090–2102 (2018)

    Article  Google Scholar 

  18. S. Liu, Y.D. Zhang, T. Shan, R. Tao, Structure-aware Bayesian compressive sensing for frequency-hopping spectrum estimation with missing observations. IEEE Trans. Signal Process. 66(8), 2153–2166 (2018)

    Article  MathSciNet  Google Scholar 

  19. L. Ljung, Perspectives on system identification. Annu. Rev. Control 34(1), 1–12 (2010)

    Article  Google Scholar 

  20. A. Logothetis, V. Krishnamurthy, Expectation maximization algorithms for MAP estimation of jump Markov linear systems. IEEE Trans. Signal Process. 47(8), 2139–2156 (1999)

    Article  Google Scholar 

  21. A. Masmoudi, F. Bellili, S. Affes, A. Stéphenne, A non-data-aided maximum likelihood time delay estimator using importance sampling. IEEE Trans. Signal Process. 59(10), 4505–4515 (2011)

    Article  MathSciNet  Google Scholar 

  22. A. Masmoudi, F. Bellili, S. Affes, A. Stéphenne, A maximum likelihood time delay estimator in a multipath environment using importance sampling. IEEE Trans. Signal Process. 61(1), 182–193 (2013)

    Article  MathSciNet  Google Scholar 

  23. J. Na, X. Ren, Y. Xia, Adaptive parameter identification of linear SISO systems with unknown time-delay. Syst. Control Lett. 66, 43–50 (2014)

    Article  MathSciNet  Google Scholar 

  24. U. Orguner, M. Demirekler, Maximum likelihood estimation of transition probabilities of jump Markov linear systems. IEEE Trans. Signal Process. 56(10), 5093–5108 (2008)

    Article  MathSciNet  Google Scholar 

  25. E. Özkan, F. Lindsten, C. Fritsche, F. Gustafsson, Recursive maximum likelihood identification of jump Markov nonlinear systems. IEEE Trans. Signal Process. 63(3), 754–765 (2015)

    Article  MathSciNet  Google Scholar 

  26. S. Paoletti, A.L. Juloski, G. Ferrari-Trecate, R. Vidal, Identification of hybrid systems: a tutorial. Eur. J. Control 13(2–3), 242–260 (2007)

    Article  Google Scholar 

  27. J.P. Richard, Time-delay systems: an overview of some recent advances and open problems. Automatica 39(10), 1667–1694 (2003)

    Article  MathSciNet  Google Scholar 

  28. N. Sammaknejad, B. Huang, Operating condition diagnosis based on HMM with adaptive transition probabilities in presence of missing observations. AIChE J. 61(2), 477–493 (2015)

    Article  Google Scholar 

  29. L. Xie, H. Yang, B. Huang, FIR model identification of multirate processes with random delays using EM algorithm. AIChE J. 59(11), 4124–4132 (2013)

    Article  Google Scholar 

  30. A. Xue, H. Wang, R. Lu, Event-based H\(\infty \) control for discrete Markov jump systems. Neurocomputing 190, 165–171 (2016)

    Article  Google Scholar 

  31. X. Yang, B. Huang, H. Gao, A direct maximum likelihood optimization approach to identification of LPV time-delay system. J. Frankl. Inst. 353(8), 1862–1881 (2016)

    Article  MathSciNet  Google Scholar 

  32. X. Yang, H. Gao, Multiple model approach to linear parameter varying time-delay system identification with EM algorithm. J. Frankl. Inst. 351(12), 5565–5581 (2014)

    Article  MathSciNet  Google Scholar 

  33. X. Yin, L. Zhang, Z. Ning, D. Tian, A. Alsaedi, B. Ahmad, State estimation via Markov switching-channel network and application to suspension systems. IET Control Theory Appl. 11(3), 411–419 (2017)

    Article  MathSciNet  Google Scholar 

  34. X. Yin, Z. Li, L. Zhang, M. Han, Distributed state estimation of sensor-network systems subject to Markovian channel switching with application to a chemical process. IEEE Trans. Syst. Man Cybern. Syst. 48(6), 864–874 (2018)

    Article  Google Scholar 

  35. Y. Zhao, A. Fatehi, B. Huang, A data-driven hybrid ARX and Markov-chain modeling approach to process identification with time varying time delays. IEEE Trans. Ind. Electron. 64(5), 4226–4236 (2017)

    Article  Google Scholar 

  36. Y. Zhao, A. Fatehi, B. Huang, Robust estimation of ARX models with time varying time delays using variational Bayesian approach. IEEE Trans. Cybern. 48(2), 532–542 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by the National Natural Science Foundation of China (Grant Numbers 61773183 and 61833007), and supported by National First-Class Discipline Program of Light Industry Technology and Engineering (LITE2018-25).

Appendices

A Appendix

The optimization problem expressed in Eq. (9) is solved in this section. The lower bound of the evidence can be derived as

$$\begin{aligned} \begin{aligned} F\left[ {q\left( {I,\tau } \right) ,q\left( \varTheta \right) } \right]&= \int {q\left( {I,\tau } \right) q\left( \varTheta \right) \log \frac{{p\left( {Y,U,I,\tau ,\varTheta } \right) }}{{q\left( {I,\tau } \right) q\left( \varTheta \right) }}} \mathrm{d}I\mathrm{d}\tau \mathrm{d}\varTheta \\&= \int {q\left( {I,\tau } \right) q\left( \varTheta \right) \log \frac{{p\left( {Y,U,I,\tau |\varTheta } \right) p\left( \varTheta \right) }}{{q\left( {I,\tau } \right) q\left( \varTheta \right) }}} \mathrm{d}I\mathrm{d}\tau \mathrm{d}\varTheta \\&= \int {q\left( {I,\tau } \right) q\left( \varTheta \right) \log \frac{{p\left( {Y,U,I,\tau |\varTheta } \right) }}{{q\left( {I,\tau } \right) }}} \mathrm{d}I\mathrm{d}\tau \mathrm{d}\varTheta \\&\quad + \int {q\left( \varTheta \right) \log \frac{{p\left( \varTheta \right) }}{{q\left( \varTheta \right) }}} \mathrm{d}\varTheta . \end{aligned} \end{aligned}$$
(37)

Then, a Lagrange multiplier \(\lambda _1\) is introduced as

$$\begin{aligned} \frac{\partial }{{\partial q\left( {I,\tau } \right) }}\left\{ {F\left[ {q\left( {I,\tau } \right) ,q\left( \varTheta \right) } \right] + \lambda _1 \left( {\int {q\left( {I,\tau } \right) \mathrm{d}I\mathrm{d}\tau } - 1} \right) } \right\} = 0. \end{aligned}$$
(38)

Employing the variational derivative, the above Lagrange function is derived as follows:

$$\begin{aligned} \begin{aligned} {\left\langle {\log p\left( {Y,U,I,\tau |\varTheta } \right) } \right\rangle _{q\left( \varTheta \right) }} - \log q\left( {I,\tau } \right) - 1 + \lambda _1 = 0. \end{aligned} \end{aligned}$$
(39)

Solving Eq. (39), the expression of \(q\left( {I,\tau } \right) \) can be obtained as

$$\begin{aligned} q\left( {I,\tau } \right) = {e^{\lambda _1 - 1}}\exp \left[ {{{\left\langle {\log p\left( {Y,U,I,\tau |\varTheta } \right) } \right\rangle }_{q\left( \varTheta \right) }}} \right] . \end{aligned}$$
(40)

When Eq. (40) is substituted into the constraint \(\int \limits {q\left( {I,\tau } \right) \mathrm{d}I\mathrm{d}\tau } = 1\), the term relating to the Lagrange multiplier \(\lambda _1\) is obtained as

$$\begin{aligned} {e^{\lambda _1 - 1}} = {\left\{ {\int \limits {\exp \left[ {{{\left\langle {\log p\left( {Y,U,I,\tau |\varTheta } \right) } \right\rangle }_{q\left( \varTheta \right) }}} \right] } \mathrm{d}I\mathrm{d}\tau } \right\} ^{ - 1}}. \end{aligned}$$
(41)

Finally, the expression of the joint variational posterior of the latent variable I and the time-delay \(\tau \) is obtained as

$$\begin{aligned} q\left( {I,\tau } \right) = \frac{{\exp \left[ {{{\left\langle {\log p\left( {Y,U,I,\tau |\varTheta } \right) } \right\rangle }_{q\left( \varTheta \right) }}} \right] }}{{\int \limits {\exp \left[ {{{\left\langle {\log p\left( {Y,U,I,\tau |\varTheta } \right) } \right\rangle }_{q\left( \varTheta \right) }}} \right] } \mathrm{d}I\mathrm{d}\tau }}. \end{aligned}$$
(42)

B Appendix

The derivation of Eq. (11) is detailed here. Considering the law of total probability, the joint variational posterior of mode identity \(I_k\) and \(I_{k-1}\) is expressed as

$$\begin{aligned} \begin{aligned}&q\left( {{I_k} = i,{I_{k - 1}} = j} \right) = \int \limits _{{I_{1:k - 2}}} {q\left( {{I_{1:k - 2}},{I_k} = i,{I_{k - 1}} = j} \right) } \mathrm{d}{I_{1:k - 2}}. \end{aligned} \end{aligned}$$
(43)

Then, Eq. (10) is substituted into the above equation, in which only the instants 1 to k are taken into consideration.

$$\begin{aligned} \begin{aligned}&q\left( {{I_k} = i,{I_{k - 1}} = j} \right) \\&\quad = \frac{{\int \limits _{{I_{1:k - 2}}} {\int \limits _{{\tau _{1:k}}} {\exp \big [ {{\left\langle {\log p\left( {{y_{1:k}},{u_{1:k}},{I_{1:k - 2}},{I_k} = i,{I_{k - 1}} = j,{\tau _{1:k}}|\varTheta } \right) } \right\rangle }_{q\left( \varTheta \right) }} \big ] } } \mathrm{d}{\tau _{1:k}}\mathrm{d}{I_{1:k - 2}}}}{{\int \limits _{{I_{1:k}}} {\int \limits _{{\tau _{1:k}}} {\exp \big [ {{\left\langle {\log p\left( {{y_{1:k}},{u_{1:k}},{I_{1:k}},{\tau _{1:k}}|\varTheta } \right) } \right\rangle }_{q\left( \varTheta \right) }} \big ] } } \mathrm{d}{\tau _{1:k}}\mathrm{d}{I_{1:k}}}}. \end{aligned} \end{aligned}$$
(44)

The numerator of Eq. (44) can be decomposed into the following expression.

$$\begin{aligned}&\int \limits _{{I_{1:k - 2}}} {\int \limits _{{\tau _{1:k}}} {\exp \big [ {{\left\langle {\log p\left( {{y_{1:k}},{u_{1:k}},{I_{1:k - 2}},{I_k} = i,{I_{k - 1}} = j,{\tau _{1:k}}|\varTheta } \right) } \right\rangle }_{q\left( \varTheta \right) }} \big ] } } \mathrm{d}{\tau _{1:k}}\mathrm{d}{I_{1:k - 2}}\nonumber \\&\quad = \int \limits _{{\tau _k}} {\exp } \big [ {\left\langle {\log p\left( {{y_k}|{x_k},{I_k} = i,{\tau _k},\varTheta } \right) p\left( {{\tau _k}|{I_k} {=} i} \right) p\left( {{I_k} {=} i|{I_{k - 1}} {=} j} \right) K_2} \right\rangle _{q\left( \varTheta \right) }} \big ] \nonumber \\&\qquad \quad \bigg \{ \int \limits _{{\tau _{1:k - 1}}} \int \limits _{{I_{1:k - 2}}} \exp \big [ \left\langle \log p\left( {y_{1:k - 1}},{u_{1:k - 1}},{I_{1:k - 2}},{I_{k - 1}} \right. \right. \nonumber \\&\left. \left. \qquad \qquad = j,{\tau _{1:k - 1}}|\varTheta \right) \right\rangle _{q\left( \varTheta \right) } \big ] \mathrm{d}{I_{1:k - 2}}\mathrm{d}{\tau _{1:k - 1}} \bigg \} \mathrm{d}{\tau _k}, \end{aligned}$$
(45)

where \(K_2 = p\left( {{u_k}|{y_{1:k - 1}},{u_{1:k - 1}},{I_{1:k - 2}},{I_{k - 1}} = j,\tau _{1:{k-1}},\varTheta } \right) \) is a constant that unrelated to the integral. The denominator of Eq. (44) has a similar expression as

$$\begin{aligned}&\int \limits _{{I_{1:k}}} {\int \limits _{{\tau _{1:k}}} {\exp \big [ {{\left\langle {\log p\left( {{y_{1:k}},{u_{1:k}},{I_{1:k}},{\tau _{1:k}}|\varTheta } \right) } \right\rangle }_{q\left( \varTheta \right) }} \big ] } } \mathrm{d}{\tau _{1:k}}\mathrm{d}{I_{1:k}}\nonumber \\&\quad = \int \limits _{{I_k}} \int \limits _{{I_{k - 1}}} \int \limits _{{\tau _k}} \exp \big [ \left\langle \log p\left( {y_k}|{x_k},{I_k} \right. \right. \nonumber \\&\left. \left. \quad = m,{\tau _k},\varTheta \right) p\left( {{\tau _k}|{I_k} = m} \right) p\left( {{I_k} = m|{I_{k - 1}} = n} \right) K_2 \right\rangle _{q\left( \varTheta \right) } \big ] \nonumber \\&\qquad \quad \bigg \{ \int \limits _{{\tau _{1:k - 1}}} \int \limits _{{I_{1:k - 2}}} \exp \big [ \left\langle \log p\left( {y_{1:k - 1}},{u_{1:k - 1}},{I_{1:k - 2}},{I_{k - 1}}\right. \right. \nonumber \\&\left. \left. \qquad \quad = n,{\tau _{1:k - 1}}|\varTheta \right) \right\rangle _{q\left( \varTheta \right) } \big ] \mathrm{d}{I_{1:k - 2}}\mathrm{d}{\tau _{1:k - 1}} \bigg \} \mathrm{d}{\tau _k}\mathrm{d}{I_k}\mathrm{d}{I_{k - 1}}. \end{aligned}$$
(46)

Then, \(\int \limits _{{\tau _{1:k - 1}}} {\int \limits _{{I_{1:k - 2}}} {\exp {{\left\langle {\log p\left( {{y_{1:k - 1}},{u_{1:k - 1}},{I_{1:k - 2}},{I_{k - 1}} = j,{\tau _{1:k - 1}}|\varTheta } \right) } \right\rangle }_{q\left( \varTheta \right) }}} } \mathrm{d}{I_{1:k - 2}}\mathrm{d}{\tau _{1:k - 1}}\), which appears both in the numerator and denominator of Eq. (44), is simplified in the following context.

When only the instants 1 to \(k - 1\) are taken into consideration for Eq. (10), the variational posterior \(q\left( {{I_{1:k - 2}},{I_{k - 1}} = j} \right) \) can be expressed as

$$\begin{aligned} \begin{aligned}&q\left( {{I_{1:k - 2}},{I_{k - 1}} = j} \right) \\&\quad = \frac{{\int \limits _{{\tau _{1:k - 1}}} {\exp \big [ {{\left\langle {\log p\left( {{y_{1:k - 1}},{u_{1:k - 1}},{I_{1:k - 2}},{I_{k - 1}} = j,{\tau _{1:k - 1}}|\varTheta } \right) } \right\rangle }_{q\left( \varTheta \right) }} \big ]} \mathrm{d}{\tau _{1:k - 1}}}}{{\int \limits _{{I_{1:k - 1}}} {\int \limits _{{\tau _{1:k - 1}}} {\exp } \big [ {{\left\langle {\log p\left( {{y_{1:k - 1}},{u_{1:k - 1}},{I_{1:k - 2}},{I_{k - 1}},{\tau _{1:k - 1}}|\varTheta } \right) } \right\rangle }_{q\left( \varTheta \right) }} \big ] \mathrm{d}{\tau _{1:k - 1}}\mathrm{d}{I_{1:k - 1}}} }}. \end{aligned} \end{aligned}$$
(47)

An integral of the variable \({I_{1:k - 2}}\) is performed on the above equation, then,

$$\begin{aligned} \begin{aligned}&q\left( {{I_{k - 1}} = j} \right) \\&\quad = \int \limits _{{I_{1:k - 2}}} {q\left( {{I_{1:k - 2}},{I_{k - 1}} = j} \right) } \mathrm{d}{I_{1:k - 2}}\\&\quad = \frac{{\int \limits _{{I_{1:k - 2}}} {\int \limits _{{\tau _{1:k - 1}}} {\exp \big [ {{\left\langle {\log p\left( {{y_{1:k - 1}},{u_{1:k - 1}},{I_{1:k - 2}},{I_{k - 1}} = j,{\tau _{1:k - 1}}|\varTheta } \right) } \right\rangle }_{q\left( \varTheta \right) }} \big ] } \mathrm{d}{\tau _{1:k - 1}}} \mathrm{d}{I_{1:k - 2}}}}{{\int \limits _{{I_{1:k - 1}}} {\int \limits _{{\tau _{1:k - 1}}} {\exp \big [ {{\left\langle {\log p\left( {{y_{1:k - 1}},{u_{1:k - 1}},{I_{1:k - 2}},{I_{k - 1}},{\tau _{1:k - 1}}|\varTheta } \right) } \right\rangle }_{q\left( \varTheta \right) }}\big ] } \mathrm{d}{\tau _{1:k - 1}}\mathrm{d}{I_{1:k - 1}}} }}. \end{aligned} \end{aligned}$$
(48)

Equation (48) can be rearranged as follows:

$$\begin{aligned} \begin{aligned}&\int \limits _{{I_{1:k - 2}}} \int \limits _{{\tau _{1:k - 1}}} \exp \big [ \left\langle \log p\left( {y_{1:k - 1}},{u_{1:k - 1}},{I_{1:k - 2}},{I_{k - 1}} \right. \right. \\&\left. \left. \quad = j,{\tau _{1:k - 1}}|\varTheta \right) \right\rangle _{q\left( \varTheta \right) } \big ] \mathrm{d}{\tau _{1:k - 1}} \mathrm{d}{I_{1:k - 2}}\\&\quad = q\left( {{I_{k - 1}} = j} \right) {K_3}, \end{aligned} \end{aligned}$$
(49)

where \(K_3=\int \limits _{{\tau _{1:k - 1}}} {\int \limits _{{I_{1:k - 1}}} {\exp \big [ {{\left\langle {\log p\left( {{y_{1:k - 1}},{u_{1:k - 1}},{I_{1:k - 1}},{\tau _{1:k - 1}}|\varTheta } \right) } \right\rangle }_{q\left( \varTheta \right) }}\big ] \mathrm{d}}}{{{I_{1:k - 1}}\mathrm{d}{\tau _{1:k - 1}}} } \) is a normalization term that unrelated to the integrals of \({\tau _k}\), \({I_k}\), and \({I_{k-1}}\). Therefore, a common factor can be removed from the numerator and denominator of Eq. (44). Finally, the joint variational posterior of \({I_k}\) and \({I_{k-1}}\) can be simplified as

$$\begin{aligned} \begin{aligned}&q\left( {{I_k} = i,{I_{k - 1}} = j} \right) \\&\quad = \frac{{\int \limits _{{\tau _k}} {\exp } \big [ {{\left\langle {\log p\left( {{y_k}|{x_k},{I_k} = i,{\tau _k},\varTheta } \right) } \right\rangle }_{q\left( \varTheta \right) }} \big ] }}{{\int \limits _{{I_k}} {\int \limits _{{I_{k - 1}}} {\int \limits _{{\tau _k}} {\exp \big [ {{\left\langle {\log p\left( {{y_k}|{x_k},{I_k} = m,{\tau _k},\varTheta } \right) } \right\rangle }_{q\left( \varTheta \right) }}\big ] } } } }}\\&\qquad \frac{{p\left( {{\tau _k}|{I_k} = i} \right) p\left( {{I_k} = i|{I_{k - 1}} = j} \right) q\left( {{I_{k - 1}} = j} \right) \mathrm{d}{\tau _k}}}{{p\left( {{\tau _k}|{I_k} = m} \right) p\left( {{I_k} = m|{I_{k - 1}} = n} \right) q\left( {{I_{k - 1}} = n} \right) \mathrm {d}{I_k}\mathrm {d}{I_{k - 1}}\mathrm {d}{\tau _k}}}. \end{aligned} \end{aligned}$$
(50)

When the integrals in Eq. (50) are transformed into summations, Eq. (11) is obtained.

C Appendix

The derivation of Eq. (14) is presented in this section. According to the property of conditional probability, the variational posterior distribution of the time-delay \(\tau _k\) conditional on the mode identity \(I_k\) can be derived as

$$\begin{aligned} \begin{aligned} q\left( {{\tau _k} = d|{I_k} = i} \right)&= \frac{{q\left( {{\tau _k} = d,{I_k} = i} \right) }}{{q\left( {{I_k} = i} \right) }}\\&= \frac{{\int \limits _{{I_{1:k - 1}}} {\int \limits _{{\tau _{1:k - 1}}} {q\left( {{I_{1:k - 1}},{I_k} = i,{\tau _{1:k - 1}},{\tau _k} = d} \right) } \mathrm{d}{\tau _{1:k - 1}}\mathrm{d}{I_{1:k - 1}}} }}{{\int \limits _{{I_{1:k - 1}}} {\int \limits _{{\tau _{1:k}}} {q\left( {{I_{1:k - 1}},{I_k} = i,{\tau _{1:k}}} \right) } \mathrm{d}{\tau _{1:k}}\mathrm{d}{I_{1:k - 1}}} }}. \end{aligned} \end{aligned}$$
(51)

Taking advantage of the expression of the joint posterior distribution in Eq. (10), the conditional variational posterior distribution of the time-delay can be further derived as

$$\begin{aligned} \begin{aligned}&q\left( {{\tau _k} = d|{I_k} = i} \right) \\&\quad = \frac{{\int \limits _{{I_{1:k - 1}}} {\int \limits _{{\tau _{1:k - 1}}} {\exp \big [ {{\left\langle {\log p\left( {{y_{1:k}},{u_{1:k}},{I_{1:k - 1}},{I_k} = i,{\tau _{1:k - 1}},{\tau _k} = d|\varTheta } \right) } \right\rangle }_{q\left( \varTheta \right) }} \big ] } } \mathrm{d}{\tau _{1:k - 1}}\mathrm{d}{I_{1:k - 1}}}}{{\int \limits _{{I_{1:k - 1}}} {\int \limits _{{\tau _{1:k}}} {\exp } \big [ {{\left\langle {\log p\left( {{y_{1:k}},{u_{1:k}},{I_{1:k - 1}},{I_k} = i,{\tau _{1:k}}|\varTheta } \right) } \right\rangle }_{q\left( \varTheta \right) }} \big ] } \mathrm{d}{\tau _{1:k}}\mathrm{d}{I_{1:k - 1}}}}\\&\quad = \frac{{\exp {{\left\langle {\log \left[ {p\left( {{y_k}|{x_k},{I_k} = i,{\tau _k} = d,\varTheta } \right) p\left( {{\tau _k} = d|{I_k} = i} \right) } \right] } \right\rangle }_{q\left( \varTheta \right) }}}}{{\int \limits _{{\tau _k}} {\exp {{\left\langle {\log \left[ {p\left( {{y_k}|{x_k},{I_k} = i,{\tau _k},\varTheta } \right) p\left( {{\tau _k}|{I_k} = i} \right) } \right] } \right\rangle }_{q\left( \varTheta \right) }}} \mathrm{d}{\tau _k}}}. \end{aligned} \end{aligned}$$
(52)

Then, the above equation can be expressed into a summation form as Eq. (14).

D Appendix

Details of the derivation of Eq. (16) are provided in this section. The Lagrange multiplier \(\lambda _2\) is adopted with respect to the lower bound of the evidence of Eq. (8) as

$$\begin{aligned} \frac{\partial }{{\partial q\left( \varTheta \right) }}\left\{ {F\left[ {q\left( {I,\tau } \right) ,q\left( \varTheta \right) } \right] + \lambda _2 \left( {\int \limits {q\left( \varTheta \right) } \mathrm{d}\varTheta - 1} \right) } \right\} = 0. \end{aligned}$$
(53)

The variational derivative is then implemented, and the above Lagrange function can be derived as follows:

$$\begin{aligned} \begin{aligned} {\left\langle {\log p\left( {Y,U,I,\tau |\varTheta } \right) } \right\rangle _{q\left( {I,\tau } \right) }} + p\left( {\varTheta } \right) - \log q\left( \varTheta \right) - 1 + {\lambda _2} = 0. \end{aligned} \end{aligned}$$
(54)

Employing a similar procedure as Appendix A, the solution of the variational posterior of parameters is obtained as

$$\begin{aligned} q\left( \varTheta \right) = \frac{{p\left( {\varTheta } \right) \exp \left[ {{{\left\langle {\log p\left( {Y,U,I,\tau |\varTheta } \right) } \right\rangle }_{q\left( {I,\tau } \right) }}} \right] }}{{\int \limits {p\left( {\varTheta } \right) \exp \left[ {{{\left\langle {\log p\left( {Y,U,I,\tau |\varTheta } \right) } \right\rangle }_{q\left( {I,\tau } \right) }}} \right] } \mathrm{d}\varTheta }}. \end{aligned}$$
(55)

E Appendix

In this section, the derivation of Eq. (30) is detailed. As no valid prior exists, direct optimization of the lower bound with respect to the transition probability \(\alpha _{ij}\), instead of its distribution, is implemented. A partial derivative of Eq. (29) with respect to \(\alpha _{ij}\) is solved and assigned to be zero as

$$\begin{aligned} \frac{\partial }{{\partial {\alpha _{ij}}}}L\left( {{\alpha _{ij}}} \right) = \sum \limits _{k = 2}^N {q\left( {{I_k} = i,{I_{k - 1}} = j} \right) } \frac{1}{{{\alpha _{ij}}}} + {\lambda _\alpha } = 0. \end{aligned}$$
(56)

Then, the transition probability \(\alpha _{ij}\) can be derived as

$$\begin{aligned} {\alpha _{ij}} = - \frac{1}{{{\lambda _\alpha }}}\sum \limits _{k = 2}^N {q\left( {{I_k} = i,{I_{k - 1}} = j} \right) }. \end{aligned}$$
(57)

When the above equation is substituted into the constraint of the transition probability \(\sum \nolimits _{i = 1}^M {{\alpha _{ij}}} = 1\), the Lagrange multiplier \(\lambda _{\alpha }\) can be obtained as

$$\begin{aligned} {\lambda _\alpha } = - \sum \limits _{i = 1}^M {\sum \limits _{k = 2}^N {q\left( {{I_k} = i,{I_{k - 1}} = j} \right) } }. \end{aligned}$$
(58)

Then, the solution of the transition probability is derived as

$$\begin{aligned} {\alpha _{ij}} = \frac{{\sum \nolimits _{k = 2}^N {q\left( {{I_k} = i,{I_{k - 1}} = j} \right) } }}{{\sum \nolimits _{i = 1}^M {\sum \nolimits _{k = 2}^N {q\left( {{I_k} = i,{I_{k - 1}} = j} \right) } } }}. \end{aligned}$$
(59)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Liu, F. A Variational Bayesian Approach for Identification of Time-Delay Markov Jump Autoregressive Exogenous Systems. Circuits Syst Signal Process 39, 1265–1289 (2020). https://doi.org/10.1007/s00034-019-01206-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-019-01206-x

Keywords

Navigation