Skip to main content
Log in

Constructing Fast Algorithms by Expanding a Set of Matrices into Rank-1 Matrices

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper introduces the notion of numerical basis for a numerical space and uses it to establish a relation between a fast algorithm for computing a discrete linear transform and the problem of expanding a given finite set of matrices as a linear combination of rank-1 matrices. It is shown that the number of multiplications of the algorithm is given by the number of rank-1 matrices in the expansion. Applying this approach, an algorithm for computing three components of the nine-point discrete Fourier transform (DFT) and an algorithm to compute the seven-point DFT with the least possible number of multiplications are shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The ROSME procedure is directly related to the problem of obtaining the tensor rank of a set of matrices [15].

  2. The Goertzel and the optimized single component algorithms [6, 8] are applied to each component individually.

References

  1. R.E. Blahut, Fast Algorithms for Signal Processing, 2nd edn. (Cambridge University Press, New York, 2010)

    Book  Google Scholar 

  2. R.N. Bracewell, Discrete Hartley transform. J. Opt. Soc. Am. 73(12), 1832–1835 (1983). https://doi.org/10.1364/JOSA.73.001832

    Article  Google Scholar 

  3. S.C. Chan, K.L. Ho, On indexing the prime factor fast Fourier transform algorithm. IEEE Trans. Circuits Syst. 38(8), 951–953 (1991). https://doi.org/10.1109/31.85638

    Article  Google Scholar 

  4. J.W. Cooley, J.W. Tukey, An algorithm for the machine calculation of complex Fourier series. Math. Comput. 19(90), 297–301 (1965). https://doi.org/10.2307/2003354

    Article  MathSciNet  MATH  Google Scholar 

  5. W. Dally, R. Harting, Digital Design: A Systems Approach (Cambridge University Press, Cambridge, 2012)

    MATH  Google Scholar 

  6. G.J. da Silva Jr., R.M. Campello de Souza, Minimum multiplicative complexity algorithm for computing a single component of the discrete Fourier transform. Digital Signal Process. 23(3), 1040–1043 (2013). https://doi.org/10.1016/j.dsp.2013.01.003

    Article  MathSciNet  Google Scholar 

  7. M.D. Felder, J.C. Mason, B.L. Evans, Efficient dual-tone multifrequency detection using the nonuniform discrete Fourier transform. IEEE Signal Process. Lett. 5(7), 160–163 (1998). https://doi.org/10.1109/97.700916

    Article  Google Scholar 

  8. G. Goertzel, An algorithm for the evaluation of finite trigonometric series. Am. Math. Mon. 65(1), 34–35 (1958)

    Article  MathSciNet  Google Scholar 

  9. I.J. Good, The interaction algorithm and practical Fourier analysis. J. R. Stat. Soc. Ser. B (Methodol.) 20, 361–372 (1958)

    MathSciNet  MATH  Google Scholar 

  10. O. Gustafsson, A.G. Dempster, L. Wanhammar, Extended results for minimum-adder constant integer multipliers, in IEEE International Symposium on Circuits and Systems, 2002. ISCAS 2002, vol. 1, pp. 73–76 (2002). https://doi.org/10.1109/ISCAS.2002.1009780

  11. W. Han, A.T. Erdogan, T. Arslan, M. Hasan, The development of high performance FFT IP cores through hybrid low power algorithmic methodology, in Proceedings of the 2005 Asia and South Pacific Design Automation Conference, ASP-DAC’05, pp. 549–552. ACM, New York, NY, USA (2005). https://doi.org/10.1145/1120725.1120959

  12. M.T. Heideman, Multiplicative Complexity, Convolution, and the DFT (Springer, New York, 1988)

    Book  Google Scholar 

  13. R.A. Horn, C.R. Johnson, Matrix Analysis, 2nd edn. (Cambridge University Press, Cambridge, 2013)

    MATH  Google Scholar 

  14. D. Kolba, T. Parks, A prime factor FFT algorithm using high-speed convolution. IEEE Trans. Acoust. Speech Signal Process. 25(4), 281–294 (1977). https://doi.org/10.1109/TASSP.1977.1162973

    Article  MATH  Google Scholar 

  15. J.C. Lafon, Optimum computation of p bilinear forms. Linear Algebra Appl. 10(3), 225–240 (1975). https://doi.org/10.1016/0024-3795(75)90071-3

    Article  MathSciNet  MATH  Google Scholar 

  16. I. Mamatha, T.S.B. Sudarshan, S. Tripathi, N. Bhattar, Triple-matrix product-based 2D systolic implementation of discrete Fourier transform. Circuits Syst. Signal Process. 34(10), 3221–3239 (2015). https://doi.org/10.1007/s00034-015-9990-y

    Article  MATH  Google Scholar 

  17. U. Meyer-Baese, Digital Signal Processing with Field Programmable Gate Arrays, 4th edn., Signals and Communication Technology (Springer, Berlin, 2014)

    Book  Google Scholar 

  18. R. Nikhil, G. Veerendra, J.R.M.S. Harsha, V. Prabhakar, Implementation of time efficient hybrid multiplier for FFT computation. Int. J. Eng. Technol. 7(2.7), 409–413 (2018)

    Article  Google Scholar 

  19. K. Rao, D. Kim, J.J. Hwang, Fast Fourier Transform—Algorithms and Applications (Springer, Dordrecht, 2010). https://doi.org/10.1007/978-1-4020-6629-0

    Book  MATH  Google Scholar 

  20. L.Z. Shi, J.M. Guo, Design of an 8-channel FFT processor for IEEE 802.11ac MIMO-OFDM WLAN system. Circuits Syst. Signal Process. 35(10), 3759–3769 (2016). https://doi.org/10.1007/s00034-015-0217-z

    Article  MathSciNet  Google Scholar 

  21. L.H. Thomas, Using a computer to solve problems in physics. Appl. Dig. Comput. 458, 44–45 (1963)

    Google Scholar 

  22. S. Winograd, On computing the discrete Fourier transform. Math. Comput. 32, 175–199 (1978). https://doi.org/10.1090/S0025-5718-1978-0468306-4

    Article  MathSciNet  MATH  Google Scholar 

  23. S. Winograd, Arithmetic Complexity of Computations (SIAM Publications, Bristol, 1980)

    Book  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Drs. J. B. Lima and H. M. de Oliveira and Professor V. C. da Rocha Jr. for their careful review of this work and for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Jerônimo da Silva Jr..

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jerônimo da Silva, G., Campello de Souza, R.M. Constructing Fast Algorithms by Expanding a Set of Matrices into Rank-1 Matrices. Circuits Syst Signal Process 39, 1630–1648 (2020). https://doi.org/10.1007/s00034-019-01228-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-019-01228-5

Keywords

Mathematics Subject Classification

Navigation