Skip to main content
Log in

Robust Diffusion Huber-Based Normalized Least Mean Square Algorithm with Adjustable Thresholds

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

To improve the performance of the diffusion Huber-based normalized least mean square algorithm in the presence of impulsive noise, this paper proposes a distributed recursion scheme to adjust the thresholds. Because of the decreasing characteristic of the thresholds, the proposed algorithm can also be interpreted as a robust diffusion normalized least mean square algorithm with variable step sizes so that it has not only fast convergence but also small steady-state estimation error. Based on the contaminated Gaussian model, we analyze the mean square behavior of the algorithm in impulsive noise. Moreover, to ensure good tracking capability of the algorithm for the sudden change of parameters of interest, a control strategy is given that resets the thresholds with their initial values. Simulations in various noise scenarios show that the proposed algorithm performs better than many existing diffusion algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. The proof is omitted due to its simplicity.

  2. The \(\alpha \)-stable process is also a useful impulsive noise model, but since it has no closed-form for the probability density function (pdf), it is difficult for performance analysis [18, 30].

  3. The dNLMS algorithm with large step size \(\mu _k=1\) is omitted as it diverges in this case.

  4. The DRVSS-LMS algorithm is not shown since its implementation depends on the CG noise model.

References

  1. R. Abdolee, V. Vakilian, B. Champagne, Tracking performance and optimal adaptation step-sizes of diffusion LMS networks. IEEE Trans. Control Netw. Syst. 5(1), 67–78 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  2. A. Ahmed, S. Zhang, Y.D. Zhang, Multi-target motion parameter estimation exploiting collaborative UAV network, in 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4459–4463 (2019)

  3. D.C. Ahn, J.W. Lee, S.J. Shin, W.J. Song, A new robust variable weighting coefficients diffusion LMS algorithm. Signal Process. 131, 300–306 (2017)

    Article  Google Scholar 

  4. T.Y. Al-Naffouri, A.H. Sayed, Transient analysis of adaptive filters with error nonlinearities. IEEE Trans. Signal Process. 51(3), 653–663 (2003)

    Article  Google Scholar 

  5. S. Ashkezari-Toussi, H. Sadoghi-Yazdi, Robust diffusion LMS over adaptive networks. Signal Process. 158, 201–209 (2019)

    Article  Google Scholar 

  6. K.L. Blackard, T.S. Rappaport, C.W. Bostian, Measurements and models of radio frequency impulsive noise for indoor wireless communications. IEEE J. Sel. Areas Commun. 11(7), 991–1001 (1993)

    Article  Google Scholar 

  7. S. Boyd, L. Vandenberghe, Convex Optimization (Cambridge University Press, Cambridge, 2004)

    Book  MATH  Google Scholar 

  8. F.S. Cattivelli, A.H. Sayed, Diffusion LMS strategies for distributed estimation. IEEE Trans. Signal Process. 58(3), 1035–1048 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. B. Chen, X. Wang, N. Lu, S. Wang, J. Cao, J. Qin, Mixture correntropy for robust learning. Pattern Recognit. 79, 318–327 (2018)

    Article  Google Scholar 

  10. B. Chen, L. Xing, X. Wang, J. Qin, N. Zheng, Robust learning with kernel mean \(p\)-power error loss. IEEE Trans. Cybern. 48(7), 2101–2113 (2017)

    Article  Google Scholar 

  11. B. Chen, L. Xing, B. Xu, H. Zhao, N. Zheng, J.C. Príncipe, Kernel risk-sensitive loss: definition, properties and application to robust adaptive filtering. IEEE Trans. Signal Process. 65(11), 2888–2901 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  12. B. Chen, L. Xing, H. Zhao, N. Zheng, J.C. Príncipe, Generalized correntropy for robust adaptive filtering. IEEE Trans. Signal Process. 64(13), 3376–3387 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. J. Chen, A.H. Sayed, Diffusion adaptation strategies for distributed optimization and learning over networks. IEEE Trans. Signal Process. 60(8), 4289–4305 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. S. Chouvardas, K. Slavakis, S. Theodoridis, Adaptive robust distributed learning in diffusion sensor networks. IEEE Trans. Signal Process. 59(10), 4692–4707 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. S. Ciochină, C. Paleologu, J. Benesty, An optimized NLMS algorithm for system identification. Signal Process. 118, 115–121 (2016)

    Article  Google Scholar 

  16. R.L. Das, M. Narwaria, Lorentzian based adaptive filters for impulsive noise environments. IEEE Trans. Circuits Syst. I Regul. Pap. 64(6), 1529–1539 (2017)

    Article  Google Scholar 

  17. P. Di Lorenzo, S. Barbarossa, A.H. Sayed, Distributed spectrum estimation for small cell networks based on sparse diffusion adaptation. IEEE Signal Process. Lett. 20(12), 1261–1265 (2013)

    Article  Google Scholar 

  18. P.G. Georgiou, P. Tsakalides, C. Kyriakakis, Alpha-stable modeling of noise and robust time-delay estimation in the presence of impulsive noise. IEEE Trans. Multimed. 1(3), 291–301 (1999)

    Article  Google Scholar 

  19. W. Huang, L. Li, Q. Li, X. Yao, Diffusion robust variable step-size LMS algorithm over distributed networks. IEEE Access 6, 47511–47520 (2018)

    Article  Google Scholar 

  20. S.M. Jung, J.H. Seo, P.G. Park, A variable step-size diffusion normalized least-mean-square algorithm with a combination method based on mean-square deviation. Circuits Syst. Signal Process. 34(10), 3291–3304 (2015)

    Article  Google Scholar 

  21. I. Kakalou, K.E. Psannis, P. Krawiec, R. Badea, Cognitive radio network and network service chaining toward 5G: challenges and requirements. IEEE Commun. Mag. 55(11), 145–151 (2017)

    Article  Google Scholar 

  22. S. Kanna, D.H. Dini, Y. Xia, S.Y. Hui, D.P. Mandic, Distributed widely linear kalman filtering for frequency estimation in power networks. IEEE Trans. Signal Inf. Process. Netw. 1(1), 45–57 (2015)

    Article  MathSciNet  Google Scholar 

  23. S. Kar, J.M.F. Moura, Distributed consensus algorithms in sensor networks with imperfect communication: link failures and channel noise. IEEE Trans. Signal Process. 57(1), 355–369 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. H.S. Lee, S.E. Kim, J.W. Lee, W.J. Song, A variable step-size diffusion LMS algorithm for distributed estimation. IEEE Trans. Signal Process. 63(7), 1808–1820 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. C. Li, P. Shen, Y. Liu, Z. Zhang, Diffusion information theoretic learning for distributed estimation over network. IEEE Trans. Signal Process. 61(16), 4011–4024 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. C. Li, H. Wang, Distributed frequency estimation over sensor network. IEEE Sens. J. 15(7), 3973–3983 (2015)

    Article  Google Scholar 

  27. L. Li, J.A. Chambers, C.G. Lopes, A.H. Sayed, Distributed estimation over an adaptive incremental network based on the affine projection algorithm. IEEE Trans. Signal Process. 58(1), 151–164 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  28. Y.P. Li, T.S. Lee, B.F. Wu, A variable step-size sign algorithm for channel estimation. Signal Process. 102, 304–312 (2014)

    Article  Google Scholar 

  29. Z. Li, S. Guan, Diffusion normalized Huber adaptive filtering algorithm. J. Frankl. Inst. 355(8), 3812–3825 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  30. L. Lu, H. Zhao, W. Wang, Y. Yu, Performance analysis of the robust diffusion normalized least mean \(p\)-power algorithm. IEEE Trans. Circuits Syst. II Express Briefs 65(12), 2047–2051 (2018)

    Article  Google Scholar 

  31. W. Ma, B. Chen, J. Duan, H. Zhao, Diffusion maximum correntropy criterion algorithms for robust distributed estimation. Digital Signal Process. 58, 10–19 (2016)

    Article  Google Scholar 

  32. V. Mathews, S. Cho, Improved convergence analysis of stochastic gradient adaptive filters using the sign algorithm. IEEE Trans. Acoust. Speech Signal Process. 35(4), 450–454 (1987)

    Article  MATH  Google Scholar 

  33. J. Miller, J. Thomas, The detection of signals in impulsive noise modeled as a mixture process. IEEE Trans. Commun. 24(5), 559–563 (1976)

    Article  MATH  Google Scholar 

  34. T.G. Miller, S. Xu, R.C. de Lamare, H.V. Poor, Distributed spectrum estimation based on alternating mixed discrete-continuous adaptation. IEEE Signal Process. Lett. 23(4), 551–555 (2016)

    Article  Google Scholar 

  35. A. Nakai, K. Hayashi, An adaptive combination rule for diffusion lms based on consensus propagation, in 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, 2018, pp. 3839–3843

  36. J. Ni, Diffusion sign subband adaptive filtering algorithm for distributed estimation. IEEE Signal Process. Lett. 22(11), 2029–2033 (2015)

    Article  Google Scholar 

  37. J. Ni, J. Chen, X. Chen, Diffusion sign-error LMS algorithm: formulation and stochastic behavior analysis. Signal Process. 128, 142–149 (2016)

    Article  Google Scholar 

  38. P. Petrus, Robust Huber adaptive filter. IEEE Trans. Signal Process. 47(4), 1129–1133 (1999)

    Article  Google Scholar 

  39. R. Price, A useful theorem for nonlinear devices having gaussian inputs. IRE Trans. Inf. Theory 4(2), 69–72 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  40. S.A. Sayed, A.M. Zoubir, A.H. Sayed, Robust distributed estimation by networked agents. IEEE Trans. Signal Process. 65(15), 3909–3921 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  41. A.H. Sayed, Adaptive Filters (Wiley, New York, 2011)

    Google Scholar 

  42. A.H. Sayed, Adaptation, learning, and optimization over networks. Found. Trends Mach. Learn. 7(4–5), 311–801 (2014)

    Article  MATH  Google Scholar 

  43. A.H. Sayed, Adaptive networks. Proc. IEEE 102(4), 460–497 (2014)

    Article  Google Scholar 

  44. I. Song, P.G. Park, R.W. Newcomb, A normalized least mean squares algorithm with a step-size scaler against impulsive measurement noise. IEEE Trans. Circuits Syst. II Express Briefs 60(7), 442–445 (2013)

    Article  Google Scholar 

  45. N. Takahashi, I. Yamada, A.H. Sayed, Diffusion least-mean squares with adaptive combiners: formulation and performance analysis. IEEE Trans. Signal Process. 58(9), 4795–4810 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  46. S. Theodoridis, Machine Learning: A Bayesian and Optimization Perspective (Academic Press, London, 2015)

    Google Scholar 

  47. S.Y. Tu, A.H. Sayed, Diffusion strategies outperform consensus strategies for distributed estimation over adaptive networks. IEEE Trans. Signal Process. 60(12), 6217–6234 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  48. L.R. Vega, H. Rey, J. Benesty, S. Tressens, A new robust variable step-size NLMS algorithm. IEEE Trans. Signal Process. 56(5), 1878–1893 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  49. F. Wen, Diffusion least-mean p-power algorithms for distributed estimation in alpha-stable noise environments. Electron. Lett. 49(21), 1355–1356 (2013)

    Article  Google Scholar 

  50. S. Xu, R.C. de Lamare, H.V. Poor, Distributed compressed estimation based on compressive sensing. IEEE Signal Process. Lett. 22(9), 1311–1315 (2015)

    Article  Google Scholar 

  51. Y. Yu, H. Zhao, Robust incremental normalized least mean square algorithm with variable step sizes over distributed networks. Signal Process. 144, 1–6 (2018)

    Article  Google Scholar 

  52. Y. Yu, H. Zhao, B. Chen, Z. He, Two improved normalized subband adaptive filter algorithms with good robustness against impulsive interferences. Circuits Syst. Signal Process. 35(12), 4607–4619 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  53. Y. Yu, H. Zhao, R.C. de Lamare, L. Lu, Sparsity-aware subband adaptive algorithms with adjustable penalties. Digital Signal Process. 84, 93–106 (2019)

    Article  MathSciNet  Google Scholar 

  54. Y. Yu, H. Zhao, R.C. de Lamare, Y. Zakharov, L. Lu, Robust distributed diffusion recursive least squares algorithms with side information for adaptive networks. IEEE Trans. Signal Process. 67(6), 1566–1581 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  55. S. Zhang, A. Ahmed, Y.D. Zhang, Sparsity-based collaborative sensing in a scalable wireless network, in Big Data: Learning, Analytics, and Applications, vol. 10989, 2019. https://doi.org/10.1117/12.2521243

  56. S. Zhang, H.C. So, W. Mi, H. Han, A family of adaptive decorrelation NLMS algorithms and its diffusion version over adaptive networks. IEEE Trans. Circuits Syst. I Regul. Pap. 65(2), 638–649 (2017)

    Article  Google Scholar 

  57. Y. Zhou, S.C. Chan, K.L. Ho, New sequential partial-update least mean M-estimate algorithms for robust adaptive system identification in impulsive noise. IEEE Trans. Ind. Electron. 58(9), 4455–4470 (2011)

    Article  Google Scholar 

  58. X. Zhu, W.P. Zhu, B. Champagne, Spectrum sensing based on fractional lower order moments for cognitive radios in \(\alpha \)-stable distributed noise. Signal Process. 111, 94–105 (2015)

    Article  Google Scholar 

  59. M. Zimmermann, K. Dostert, Analysis and modeling of impulsive noise in broad-band powerline communications. IEEE Trans. Electromagn. Compat. 44(1), 249–258 (2002)

    Article  Google Scholar 

Download references

Acknowledgements

The work of Y. Yu was supported by National Natural Science Foundation of P.R. China (No. 61901400) and Doctoral Research Fund of Southwest University of Science and Technology in China (Grant No. 19zx7122). The work of H. Zhao was supported by National Natural Science Foundation of P.R. China (Nos. 61871461, 61571374, 61433011). The work of L. Lu was supported by National Natural Science Foundation of P.R. China (No. 61901285).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yi Yu or Haiquan Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Proof of \(E\{\xi _{k}(i)\}\) Approximately Converging to Zero

Proof of \(E\{\xi _{k}(i)\}\) Approximately Converging to Zero

We define the threshold vector over the network and its intermediate counterpart, as follows:

$$\begin{aligned} \begin{aligned} {\varvec{\xi }}(i)&\triangleq \text {col}\{\xi _1(i), \ldots , \xi _N(i)\}, \\ {\varvec{\zeta }}(i)&\triangleq \text {col}\{\zeta _1(i), \ldots , \zeta _N(i)\}. \\ \end{aligned} \end{aligned}$$
(A.1)

Following this, equations (12) and (13) for all the nodes can be expressed in a matrix form:

$$\begin{aligned} \begin{aligned} {\varvec{\xi }} (i+1)&={\varvec{C}}^{\mathrm{T}} {\varvec{\zeta }} (i+1)\\&= {\varvec{C}}^{\mathrm{T}} \left[ \upsilon {\varvec{\xi }}(i) + (1-\upsilon ) \min [{\varvec{f}}(i),{\varvec{\xi }}(i)] \right] , \end{aligned} \end{aligned}$$
(A.2)

where

$$\begin{aligned} {\varvec{f}}(i) \triangleq \text {col}\left\{ \frac{e_1^2(i)}{\Vert {\varvec{u}}_1(i)\Vert _2^2}, \ldots , \frac{e_N^2(i)}{\Vert {\varvec{u}}_N(i)\Vert _2^2} \right\} . \end{aligned}$$
(A.3)

Taking the \(\infty \)-norm both sides of (A.2), we get

$$\begin{aligned} \begin{aligned} \Vert {\varvec{\xi }} (i+1)\Vert _\infty&\le \Vert {\varvec{C}}^{\mathrm{T}} \Vert _\infty \cdot \Vert {\varvec{\zeta }} (i+1)\Vert _\infty \\&= \Vert {\varvec{\zeta }} (i+1)\Vert _\infty \\&\le \Vert \upsilon {\varvec{\xi }}(i) + (1-\upsilon ) \min \left[ {\varvec{f}}(i), {\varvec{\xi }}(i) \right] \Vert _\infty \\&\le \Vert {\varvec{\xi }}(i)\Vert _\infty . \end{aligned} \end{aligned}$$
(A.4)

Since \(\{\xi _k(i)\}\) is a positive sequence, (A.4) can deduce that \(\xi _k(i)\) and \(\zeta _k(i)\) from (12) and (13) are decreasing as the iteration i increases. It follows that the expectations \(E\{\xi _k(i)\}\) and \(E\{\zeta _k(i)\}\) are also positive and decreasing. Thus, taking the expectations of both sides of (A.2), we have

$$\begin{aligned} \begin{aligned} E\{{\varvec{\xi }} (i+1)\} = {\varvec{C}}^{\mathrm{T}} [ \upsilon E\{{\varvec{\xi }}(i)\} +(1-\upsilon ) E\{\min [{\varvec{f}}(i),{\varvec{\xi }}(i)]\} ]. \end{aligned} \end{aligned}$$
(A.5)

To continue developing the expression (A.5), again using the assumption that the variance of \(\xi _k(i)\) is small enough so that we can make the following approximation,

$$\begin{aligned} \begin{aligned} E\left\{ \min \left[ \frac{e_k^2(i)}{\Vert {\varvec{u}}_k(i)\Vert _2^2},\xi _k(i) \right] \right\}&\approx \\ E\{\xi _k(i)\}P_{k,i}[z_k>&E\{\xi _k(i)\}] + \int _{0}^{E\{\xi _k(i)\}}z_k \mathrm{d}F_{k,i}(z_k), \end{aligned} \end{aligned}$$
(A.6)

where \(z_k\doteq e_k^2(i)/ \Vert {\varvec{u}}_k(i)\Vert _2^2\) denotes that both \(z_k\) and \(e_k^2(i)/ \Vert {\varvec{u}}_k(i)\Vert _2^2\) have the same distribution, \(P_{k,i}[a]\) denotes the probability of event a, and \(F_{k,i}(z_k)\) denotes the distribution function of \(z_k\) at time instant i at node k. Plugging (A.6) into (A.5), we have

$$\begin{aligned} E\{{\varvec{\xi }} (i+1)\} = {\varvec{C}}^{\mathrm{T}} [ \upsilon E\{{\varvec{\xi }}(i)\} + (1-\upsilon ) {\varvec{P}}(i)E\{{\varvec{\xi }}(i)\}+(1-\upsilon ){\varvec{z}}(i)], \end{aligned}$$
(A.7)

where

$$\begin{aligned} {\varvec{P}}(i) = \text {diag}\left\{ P_{1,i}[z_1>E\{\xi _1(i)\}], \ldots , P_{N,i}[z_N>E\{\xi _N(i)\}] \right\} , \end{aligned}$$
(A.8)

and

$$\begin{aligned} {\varvec{z}}(i) = \text {col}\left\{ \int _{0}^{E\{\xi _1(i)\}}z_1 \mathrm{d}F_{1,i}(z_1), \ldots , \int _{0}^{E\{\xi _N(i)\}}z_N \mathrm{d}F_{N,i}(z_N) \right\} . \end{aligned}$$
(A.9)

Taking the limits for both sides of (A.7) as \(i\rightarrow \infty \), we obtain

$$\begin{aligned} E\{{\varvec{\xi }} (\infty )\} = {\varvec{C}}^{\mathrm{T}} [ \upsilon E\{{\varvec{\xi }}(\infty )\}+(1-\upsilon ) {\varvec{P}}(\infty )E\{{\varvec{\xi }}(\infty )\}+(1-\upsilon ){\varvec{z}}(\infty )]. \end{aligned}$$
(A.10)

Then, we take the \(\infty \)-norm of both sides of (A.10), and after some simple manipulations with \(\Vert {\varvec{C}}^{\mathrm{T}}\Vert _\infty =1\), getting the following inequality:

$$\begin{aligned} \Vert E\{{\varvec{\xi }} (\infty )\}\Vert _\infty \le \Vert {\varvec{P}}(\infty )\Vert _\infty \cdot \Vert E\{{\varvec{\xi }}(\infty )\}\Vert _\infty +\Vert {\varvec{z}}(\infty )\Vert _\infty , \end{aligned}$$
(A.11)

where

$$\begin{aligned} \Vert {\varvec{P}}(\infty )\Vert _\infty = \max _{1 \le k \le N} P_{k,\infty }[z_k>E\{\xi _k(\infty )\}]. \end{aligned}$$
(A.12)

Due to the property of (A.12), we can equivalently formulate (A.11) as

$$\begin{aligned} \begin{aligned} E\{\xi _k (\infty )\}&\le P_{k,\infty }[z_k>E\{\xi _k(\infty )\}] \cdot E\{\xi _k(\infty )\}\\&\quad +\,\int _{0}^{E\{\xi _k(\infty )\}}z_k \mathrm{d}F_{k,\infty }(z_k), \end{aligned} \end{aligned}$$
(A.13)

for \(k=1,\ldots ,N\), which further results in

$$\begin{aligned} \begin{aligned} P_{k,\infty }[z_k \le E\{\xi _k(\infty )\}] \cdot E\{\xi _k(\infty )\} \le \int _{0}^{E\{\xi _k(\infty )\}}z_k \mathrm{d}F_{k,\infty }(z_k). \end{aligned} \end{aligned}$$
(A.14)

It is difficult to solve (A.14) with respect to \(E\{\xi _k(\infty )\}\), and thus for mathematical tractability, we consider solving the equal sign case in (A.14), i.e.,

$$\begin{aligned} P_{k,\infty }[z_k \le E\{\xi _k(\infty )\}] \cdot E\{\xi _k(\infty )\} = \int _{0}^{E\{\xi _k(\infty )\}}z_k \mathrm{d}F_{k,\infty }(z_k). \end{aligned}$$
(A.15)

For Eq. (A.15), Appendix A in [48] can be applied to obtain its solution that is \(E\{\xi _k(\infty )\}]=0\). Because (A.15) is the upper bound of (A.14), we can infer that \(E\{\xi _k(i)\}\) for nodes \(k=1,\ldots ,N\) will approximately converge to zero. Likewise, the intermediate value \(E\{\zeta _k(i)\}\) per node k also approximately converges to zero.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Y., Zhao, H., Wang, W. et al. Robust Diffusion Huber-Based Normalized Least Mean Square Algorithm with Adjustable Thresholds. Circuits Syst Signal Process 39, 2065–2093 (2020). https://doi.org/10.1007/s00034-019-01244-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-019-01244-5

Keywords

Navigation