Skip to main content
Log in

Dissipativity-Guaranteed Distributed Model Predictive Controller for Reconfigurable Large-Scale System

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper presents a distributed model predictive control strategy for reconfigurable large-scale systems to maintain global stability when there are subsystems joining in or leaving the system during closed-loop operation, which is also called the plug-and-play control. Dissipativity is an input–output property, and the overall dissipativity property of a large-scale system can be described by the ‘linear’ combination of the dissipativity properties of its subsystems based on their interconnection topology. The capacity of capturing interaction effects among subsystems on overall stability makes dissipative system theory a useful tool to design control system for reconfigurable large-scale system. The redesign is restricted to subsystems whose input–output property will be directly influenced by the topology change in order to allow quick operation. The overall stability condition can still be guaranteed if the dissipativity property of the redesigned subsystems does not spoil the overall dissipativity condition. Simulation results of a power network system with subsystems joining in and leaving the network show the effectiveness of the proposed strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. W.B. Dunbar, Distributed receding horizon control of dynamically coupled nonlinear systems. IEEE Trans. Autom. Control 52(7), 1249–1263 (2007)

    Article  MathSciNet  Google Scholar 

  2. M. Farina, R. Scattolini, Distributed predictive control: a noncooperative algorithm with neighbor-to-neighbor communication for linear systems. Automatica 48(6), 1088–1096 (2012)

    Article  MathSciNet  Google Scholar 

  3. Y. He, S. Li, Y. Zheng, Dissipativity based distributed model predictive control for process network reconfiguration. in 2017 Asian Control Conference (2017), pp. 817–822

  4. C. Kojima, K. Takaba, A generalized Lyapunov stability theorem for discrete-time systems based on quadratic difference forms. in 2005 IEEE Conference on Decision and Control and the European Control Conference (2005), pp. 2911–2916

  5. Q. Lei, R. Wang, J. Bao, Fault diagnosis based on dissipativity property. Comput. Chem. Eng. 108(4), 360–371 (2018)

    Article  Google Scholar 

  6. W.L. Luyben, B.D. Tyreus, M.L. Luyben, Plantwide Process Control (McGraw-Hill, New York, 1999)

    Google Scholar 

  7. D.Q. Mayne, J.B. Rawlings, C.V. Rao, P.O.M. Scokaert, Constrained predictive control: stability and optimality. Automatica 36(6), 789–814 (2000)

    Article  MathSciNet  Google Scholar 

  8. H. Pan, W. Sun, H. Gao, X. Jing, Disturbance observer-based adaptive tracking control with actuator saturation and its application. IEEE Trans. Autom. Sci. Eng. 13(2), 868–875 (2015)

    Article  Google Scholar 

  9. J.B. Rawlings, B.T. Stewart, Coordinating multiple optimization-based controllers: new opportunities and challenges. J. Process Control. 18(9), 839–845 (2008)

    Article  Google Scholar 

  10. S. Riverso, Distributed and plug-and-play control for constrained systems. Ph.D. thesis, Università degli Studi di Pavia (2004)

  11. S. Riverso, M. Farina, G. Ferrari-Trecate, Plug-and-Play decentralized model predictive control for linear systems. IEEE Trans. Autom. Control. 58(10), 2608–2614 (2013)

    Article  MathSciNet  Google Scholar 

  12. S. Riverso, M. Farina, G. Ferrari-Trecate, Plug-and-play model predictive control based on robust control invariant sets. Automatica 50(8), 2179–2186 (2014)

    Article  MathSciNet  Google Scholar 

  13. S. Skogestad, M. Morari, Robust performance of decentralized control systems by independent designs. Automatica 25(1), 119–125 (1989)

    Article  MathSciNet  Google Scholar 

  14. B.T. Stewart, J.B. Rawlings, S.J. Wright, Hierarchical cooperative distributed model predictive control. in 2010 American Control Conference (2010), pp. 3963–3968

  15. W. Sun, Y. Liu, H. Gao, Constrained sampled-data ARC for a class of cascaded nonlinear systems with applications to motor-servo systems. IEEE Trans. Ind. Inform. 15(2), 766–776 (2018)

    Article  Google Scholar 

  16. M.J. Tippett, J. Bao, Distributed model predictive control based on dissipativity. Am. Inst. Chem. Eng. J. 59(3), 787–804 (2013)

    Article  Google Scholar 

  17. M.J. Tippett, J. Bao, Dissipativity based distributed control synthesis. J. Process Control 23(5), 755–766 (2013)

    Article  Google Scholar 

  18. M.J. Tippett, J. Bao, Distributed dissipative model predictive control for process networks with imperfect communication. Am. Inst. Chem. Eng. J. 60(5), 1682–1699 (2014)

    Article  Google Scholar 

  19. M.J. Tippett, J. Bao, Reconfigurable distributed model predictive control. Chem. Eng. Sci. 136(2), 2–19 (2015)

    Article  Google Scholar 

  20. J.C. Williems, Dissipative dynamical systems. Part i. General theory. Arch. Ration. Mech. Anal. 45(5), 321–351 (1972)

    Article  Google Scholar 

  21. J.C. Williems, H.L. Trentelman, On quadratic differential forms. in the 33rd Conference on Decision and Control (1994), pp. 3690–3694

  22. M.N. Zeilinger, Y. Pu, S. Riverso, Ferrari-Trecate G., Jones C.N, Plug and play distributed model predictive control based on distributed invariance and optimization. in 2013 IEEE Conference on Decision and Control (2013), pp. 5770–5776

  23. C. Zheng, M.J. Tippett, J. Bao, Dissipativity-based distributed model predictive control with low rate communication. Am. Inst. Chem. Eng. J. 61(10), 3288–3303 (2015)

    Article  Google Scholar 

  24. Y. Zheng, S. Li, N. Li, Distributed model predictive control over network information exchange for large-scale systems. Control Eng. Pract. 19(7), 757–769 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Nature Science Foundation of China (61590924, 61233004, 61673273).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaoyuan Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A Dissipativity Property of Area 2 in Scenario 1

Here, the supply rate coefficient matrix of area 2 in scenario 1 before and after reconfiguration is given for example.

$$\begin{aligned} Q_{c2}= & {} \left( \begin{matrix} 0.5192&{}\quad 0&{}\quad 0.0057&{}\quad -0.0143\\ 0&{}\quad -2.5055&{}\quad 0.0018&{}\quad -0.0038\\ 0.0057&{}\quad 0.0018&{}\quad -1.4550&{}\quad 0.8702\\ -0.0143&{}\quad -0.0038&{}\quad 0.8702&{}\quad -1.555 \end{matrix}\right) \end{aligned}$$
(34)
$$\begin{aligned} S_{c2}= & {} \left( \begin{matrix} -0.0057&{}\quad 0.0143&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0\\ -0.0018&{}\quad 0.0038&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0\\ 0.3906&{}\quad 0.1775&{}\quad 0.0347&{}\quad 0.0068&{}\quad -0.0433&{}\quad 0.0185\\ 0.1685&{}\quad 0.3504&{}\quad 0.0780&{}\quad 0.0416&{}\quad 0.0780&{}\quad -0.0314 \end{matrix}\right) \end{aligned}$$
(35)
$$\begin{aligned} R_{c2}= & {} \left( \begin{matrix} 0.8277&{}\quad -1.2163&{}\quad -0.0851&{}\quad -0.0929&{}\quad 0.0675&{}\quad -0.0600\\ -1.2163&{}\quad 0.8546&{}\quad -0.0780&{}\quad -0.0416&{}\quad -0.0780&{}\quad 0.0314\\ -0.0851&{}\quad -0.0780&{}\quad 0.3452&{}\quad -0.2930&{}\quad -0.0119&{}\quad 0.0101\\ -0.0929&{}\quad -0.0416&{}\quad -0.2930&{}\quad 0.3760&{}\quad 0.0004&{}\quad 0.0027\\ 0.0675&{}\quad -0.0780&{}\quad -0.0119&{}\quad 0.0004&{}\quad 0.1967&{}\quad -0.2095\\ -0.0600&{}\quad 0.0314&{}\quad 0.0101&{}\quad 0.0027&{}\quad -0.2095&{}\quad 0.2382 \end{matrix}\right) \nonumber \\ \end{aligned}$$
(36)
$$\begin{aligned} \tilde{Q}_{c2}= & {} \left( \begin{matrix} 91.2645&{}\quad 0&{}\quad 0.0400&{}\quad -0.0444\\ 0&{}\quad -807.1916&{}\quad 0.0002&{}\quad -0.0488\\ 0.0400&{}\quad 0.0002&{}\quad -32.3273&{}\quad 1.1519\\ -0.0444&{}\quad -0.0488&{}\quad 1.1519&{}\quad -32.8557 \end{matrix}\right) \end{aligned}$$
(37)
$$\begin{aligned} \tilde{S}_{c2}= & {} \left( \begin{matrix} -0.0399&{}\quad 0.0444&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0\\ -0.0002&{}\quad 0.0488&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0\\ 28.8476&{}\quad 2.4783&{}\quad -0.0942&{}\quad -0.0906&{}\quad 0.1009&{}\quad -0.0119&{}\quad 0.1351&{}\quad -0.1898\\ 2.5986&{}\quad 28.5571&{}\quad 0.2968&{}\quad 0.1031&{}\quad -0.0162&{}\quad 0.0221&{}\quad -0.1981&{}\quad 0.3405 \end{matrix}\right) \nonumber \\\end{aligned}$$
(38)
$$\begin{aligned} \tilde{R}_{c2}= & {} \left( \begin{matrix} -25.1409&{}\quad -6.2300&{}\quad 0.0335&{}\quad 0.0662&{}\quad -0.1451&{}\quad -0.0030&{}\quad 0.0067&{}\quad -0.0336\\ -6.2300&{}\quad -24.2576&{}\quad -0.2975&{}\quad -0.1047&{}\quad 0.0183&{}\quad -0.0216&{}\quad 0.1984&{}\quad -0.3407\\ 0.0335&{}\quad -0.2975&{}\quad 0.4424&{}\quad -0.3727&{}\quad 0.0090&{}\quad 0.0148&{}\quad 0.0483&{}\quad -0.0805\\ 0.0662&{}\quad -0.1047&{}\quad -0.3727&{}\quad 0.4998&{}\quad -0.0276&{}\quad -0.0573&{}\quad 0.0214&{}\quad -0.0376\\ -0.1451&{}\quad 0.0183&{}\quad 0.0090&{}\quad -0.0276&{}\quad 0.4095&{}\quad -0.3692&{}\quad -0.0320&{}\quad 0.0525\\ -0.0030&{}\quad -0.0216&{}\quad 0.0148&{}\quad -0.0573&{}\quad -0.3692&{}\quad 0.4168&{}\quad 0.0277&{}\quad -0.0183\\ 0.0067&{}\quad 0.1984&{}\quad 0.0483&{}\quad 0.0214&{}\quad -0.0320&{}\quad 0.0277&{}\quad 0.6104&{}\quad -0.8179\\ -0.0336&{}\quad -0.3407&{}\quad -0.0805&{}\quad -0.0376&{}\quad 0.0525&{}\quad -0.0183&{}\quad -0.8179&{}\quad 1.1254 \end{matrix}\right) \nonumber \\ \end{aligned}$$
(39)

Appendix B Dissipativity Property of Area 5 in Scenario 2

And the supply rate coefficient matrix of area 5 in scenario 2 before reconfiguration is provided as follows.

$$\begin{aligned} Q_{c5}= & {} \left( \begin{matrix} 81.2242&{}\quad 0&{}\quad 0.0366&{}\quad -0.0567\\ 0&{}\quad -1562.5154&{}\quad 0.0686&{}\quad -0.0906\\ 0.0366&{}\quad 0.0686&{}\quad -31.6405&{}\quad -0.2095\\ -0.0567&{}\quad -0.0906&{}\quad -0.2095&{}\quad -31.1488 \end{matrix}\right) \end{aligned}$$
(40)
$$\begin{aligned} S_{c5}= & {} \left( \begin{matrix} -0.0365&{}\quad 0.0567&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0\\ -0.0686&{}\quad 0.0906&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0\\ 29.8175&{}\quad 2.5966&{}\quad -0.2418&{}\quad -0.3851&{}\quad 0.2968&{}\quad -0.2340\\ 1.9295&{}\quad 28.8412&{}\quad -0.0313&{}\quad 0.6099&{}\quad -0.4103&{}\quad 0.4193 \end{matrix}\right) \quad \end{aligned}$$
(41)
$$\begin{aligned} R_{c5}= & {} \left( \begin{matrix} -27.9627&{}\quad -4.3190&{}\quad 0.2788&{}\quad 0.3260&{}\quad -0.3291&{}\quad 0.2589\\ -4.3190&{}\quad -26.5317&{}\quad 0.0321&{}\quad -0.6116&{}\quad 0.4107&{}\quad -0.4183\\ 0.2788&{}\quad 0.0321&{}\quad 2.1178&{}\quad -2.0372&{}\quad -0.1396&{}\quad 0.0212\\ 0.3260&{}\quad -0.6116&{}\quad -2.0372&{}\quad 2.0157&{}\quad 0.1803&{}\quad -0.0981\\ -0.3291&{}\quad 0.4107&{}\quad -0.1396&{}\quad 0.1803&{}\quad 0.2081&{}\quad -0.2169\\ 0.2589&{}\quad -0.4183&{}\quad 0.0212&{}\quad -0.0981&{}\quad -0.2169&{}\quad 0.2679 \end{matrix}\right) \nonumber \\ \end{aligned}$$
(42)

When the area 4 is removed from the system, for area 5, the process input from area 4 is removed as well. No offline dissipativity design is needed, the supply rate coefficient matrix of area 5 after reconfiguration can be obtained by deleting the corresponding rows and columns.

$$\begin{aligned} \tilde{Q}_{c5}= & {} Q_{c5} \end{aligned}$$
(43)
$$\begin{aligned} \tilde{S}_{c5}= & {} \left( \begin{matrix} -0.0365&{}\quad 0.0567&{}\quad 0&{}\quad 0\\ -0.0686&{}\quad 0.0906&{}\quad 0&{}\quad 0\\ 29.8175&{}\quad 2.5966&{}\quad -0.2418&{}\quad 0.2968\\ 1.9295&{}\quad 28.8412&{}\quad -0.0313&{}\quad -0.4103 \end{matrix}\right) \end{aligned}$$
(44)
$$\begin{aligned} \tilde{R}_{c5}= & {} \left( \begin{matrix} -27.9627&{}\quad -4.3190&{}\quad 0.2788&{}\quad -0.3291\\ -4.3190&{}\quad -26.5317&{}\quad 0.0321&{}\quad 0.4107\\ 0.2788&{}\quad 0.0321&{}\quad 2.1178&{}\quad -0.1396\\ -0.3291&{}\quad 0.4107&{}\quad -0.1396&{}\quad 0.2081 \end{matrix}\right) \end{aligned}$$
(45)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Y., Li, S. Dissipativity-Guaranteed Distributed Model Predictive Controller for Reconfigurable Large-Scale System. Circuits Syst Signal Process 39, 1873–1895 (2020). https://doi.org/10.1007/s00034-019-01257-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-019-01257-0

Keywords

Navigation