Skip to main content
Log in

A New Model Reduction Method for the Linear Dynamic Systems and Its Application for the Design of Compensator

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

A new model reduction method for the simplification and design of a controller for the linear time-invariant systems is proposed. An improved generalized pole clustering algorithm is employed in the proposed technique for obtaining the denominator of the reduced model. The numerator is computed with a simple mathematical technique available in the literature. The proposed method guarantees the stability in the reduced plant given that the full-order plant is stable and also retains the fundamental characteristics of the original model in the approximated one. This reduced model has been used for the design of compensator for the large-scale original plant by using a new algorithm. The compensator obtained by using the reduced model gives the approximately same time domain specification as compensator obtained by using large-scale original system, and the design of compensator by using the reduced model is comparatively easier. The results of the proposed algorithm are compared with existing methods of reduced-order modeling which show improvement in the performance error indices, time response characteristics and time domain specifications. The validity, effectiveness and superiority of the proposed technique have been demonstrated through some standard numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. M. Aoki, Control of large scale dynamic systems by aggregation. IEEE Trans. Autom. Control 13(3), 246–255 (1968)

    Google Scholar 

  2. Z. Bai, Krylov subspace techniques for reduced-order modeling of large-scale dynamical systems. Appl. Numer. Math. 43(1), 9–44 (2002)

    MathSciNet  MATH  Google Scholar 

  3. T.C. Chen, C.Y. Chang, K.W. Han, Model reduction using the stability-equation method and the continued-fraction method. Int. J. Control 32(1), 81–94 (1980)

    MathSciNet  MATH  Google Scholar 

  4. T.C. Chen, C.Y. Chang, K.W. Han, Model reduction using the stability-equation method and the Padé approximation method. J. Frankl. Inst. 309(6), 473–490 (1980)

    MATH  Google Scholar 

  5. T.C. Chen, C.Y. Chang, K.W. Han, Reduction of transfer functions by the stability-equation method. J. Frankl. Inst. 308(4), 389–404 (1979)

    MathSciNet  MATH  Google Scholar 

  6. J. Cheng, C.K. Ahn, H.R. Karimi, J. Cao, W. Qi, An event-based asynchronous approach to Markov jump systems with hidden mode detections and missing measurements. IEEE Trans. Syst. Man Cybern.: Syst. 49(9), 1749–1758 (2019)

    Google Scholar 

  7. J. Cheng, J.H. Park, J. Cao, W. Qi, Hidden Markov model-based nonfragile state estimation of switched neural network with probabilistic quantized outputs. IEEE Transactions on Cybernetics (2019). https://doi.org/10.1109/TCYB.2019.2909748

    Article  Google Scholar 

  8. A.K. Choudhary, S.K. Nagar, Order reduction in z-domain for interval system using an arithmetic operator. Circuits Syst. Process. 38(3), 1023–1038 (2019)

    Google Scholar 

  9. I. Elfadel, D.D. Ling, A block Arnoldi algorithm for multipoint passive MOR of multi-port RLC networks. IEEE Trans. Circuits Syst. 2(7), 291–299 (1997)

    Google Scholar 

  10. M. Farhood, C.L. Beck, On the balanced truncation and coprime factors reduction of Markovian jump linear systems. Syst. Control Lett. 96, 96–106 (2014)

    MathSciNet  MATH  Google Scholar 

  11. K. Fernando, H. Nicholson, Singular perturbational model reduction of balanced systems. IEEE Trans. Autom. Control 27(2), 466–468 (1982)

    MATH  Google Scholar 

  12. R. Freund, Model reduction methods based on Krylov subspaces. Acta Numer. 12(1), 267–319 (2003)

    MathSciNet  MATH  Google Scholar 

  13. R. Freund, Reduced-order modeling techniques based on Krylov subspaces and their use in circuit simulation. Appl. Comput. Control. Signals Circuits 1, 435–498 (1999)

    MathSciNet  MATH  Google Scholar 

  14. R.K. Gautam, N. Singh, N.K. Choudhary, A. Narain, Model order reduction using factor division algorithm and fuzzy c-means clustering technique. Trans. Inst. Meas. Control 41(2), 468–475 (2019)

    Google Scholar 

  15. S.G. Goodhart, K.J. Burnham, D.J.G. James, A reduced order self-tuning controller. Trans. Inst. Meas. Control 13(1), 11–16 (1991)

    Google Scholar 

  16. G. Gu, All optimal Hankel-norm approximations and their error bounds in discrete-time. Int. J. Control 78(6), 408–423 (2005)

    MathSciNet  MATH  Google Scholar 

  17. P. Gutman, C. Mannerfelt, P. Molander, Contributions to the model reduction problem. IEEE Trans. Autom. Control 27(2), 454–455 (1982)

    MATH  Google Scholar 

  18. K.S. Haider, A. Ghafoor, M. Imran, M.F. Mumtaz, Model reduction of large scale descriptor systems using time limited Gramians. Asian J. Control 19(4), 1–11 (2017)

    MathSciNet  MATH  Google Scholar 

  19. J. Hickin, N.K. Sinha, Aggregation matrices for a class of low-order models for large-scale systems. Electron. Lett. 11(9), 186 (1975)

    Google Scholar 

  20. C. Huang, K. Zhang, X. Dai, W. Tan, A modified balanced truncation method and its application to model reduction of power system, in IEEE Power and Energy Society General Meeting, Vancouver, BC, Canada, Jul. 2013

  21. M.F. Hutton, B. Friedland, Routh approximations for reducing order of linear, time-invariant systems. IEEE Trans. Autom. Control 20(3), 329–337 (1975)

    MathSciNet  MATH  Google Scholar 

  22. M. Imran, A. Ghafoor, Model reduction of descriptor systems using frequency limited Gramians. J. Frankl. Inst. 352(1), 33–51 (2015)

    MathSciNet  MATH  Google Scholar 

  23. O. Ismail, B. Bandyopadhyay, R. Gorez, Discrete interval system reduction using Padé approximation to allow retention of dominant poles. IEEE Trans Circuits Syst Fundam Theory Appl 44(11), 1075–1078 (1997)

    Google Scholar 

  24. A. Jazlan, P. Houlis, V. Sreeram, R. Togneri, An improved parameterized controller reduction technique via new frequency weighted model reduction formulation. Asian J. Control 19(6), 1920–1930 (2017)

    MathSciNet  MATH  Google Scholar 

  25. P.V. Kokotovik, R.E.O. Malley, P. Sannuti, Singular perturbation and order reduction in control theory-an overview. Automatica 12, 123–132 (1976)

    MathSciNet  Google Scholar 

  26. R. Komarasamy, N. Albhonso, G. Gurusamy, Order reduction of linear systems with an improved pole clustering. J. Vib. Control 18(12), 1876–1885 (2011)

    MathSciNet  Google Scholar 

  27. E.D. Koronaki, P.A. Gkinis, L. Beex, S.P.A. Bordas, C. Theodoropoulos, A.G. Boudouvis, Classification of states and model order reduction of large scale chemical vapor deposition processes with solution multiplicity. Comput. Chem. Eng. 121, 148–157 (2019)

    Google Scholar 

  28. V. Krishnamurthy, V. Seshadri, Model reduction using the Routh stability criterion. IEEE Trans. Autom. Control 23(3), 729–731 (1978)

    Google Scholar 

  29. D. Kumar, S.K. Nagar, Model reduction by extended minimal degree optimal Hankel norm approximation. Appl. Math. Model. 38, 2922–2933 (2014)

    MathSciNet  MATH  Google Scholar 

  30. D.K. Kumar, S.K. Nagar, J.P. Tiwari, A new algorithm for model order reduction of interval systems. Bonfring Int. J. Data Min. 3(1), 6–11 (2013)

    Google Scholar 

  31. B.C. Moore, Principal component analysis in linear systems: controllability, observability, and model reduction. IEEE Trans. Autom. Control 26(1), 17–32 (1981)

    MathSciNet  MATH  Google Scholar 

  32. A. Narwal, R. Prasad, A novel order reduction approach for LTI systems using cuckoo search optimization and stability equation. IETE J. Res. 62(2), 154–163 (2015)

    Google Scholar 

  33. A. Narwal, R. Prasad, Optimization of LTI systems using modified clustering algorithm. IETE Tech. Rev. 34(2), 201–213 (2016)

    Google Scholar 

  34. Y. Ni, C. Li, Z. Du, G. Zhang, Model order reduction based dynamic equivalence of a wind farm. Electr. Power Energy Syst. 83, 96–103 (2016)

    Google Scholar 

  35. J. Pal, Stable reduced-order Padé approximants using the Routh-Hurwitz array. Electron. Lett. 15(8), 225–226 (1979)

    Google Scholar 

  36. G. Parmar, R. Prasad, S. Mukherjee, Order reduction of linear dynamic systems using stability equation method and GA. Int. J. Electr. Comput. Eng. 1(2), 236–242 (2007)

    Google Scholar 

  37. G. Parmar, S. Mukherjee, R. Prasad, System reduction using factor division algorithm and eigen spectrum analysis. Appl. Math. Model. 31, 2542–2552 (2007)

    MATH  Google Scholar 

  38. S. Paul, J. Chang, Fast numerical analysis of electric motor using nonlinear model order reduction. IEEE Trans. Magnet. 54(3), 1–4 (2018)

    Google Scholar 

  39. L. Pernebo, L.M. Silverman, Model reduction via balanced state space representations. IEEE Trans. Autom. Control 27(2), 382–387 (1982)

    MathSciNet  MATH  Google Scholar 

  40. W.C. Peterson, A.H. Nassar, On the synthesis of optimum linear feedback control systems. J. Frankl. Inst. 306(3), 237–256 (1978)

    MATH  Google Scholar 

  41. A. Pierquin, T. Henneron, S. Clénet, Data-driven model-order reduction for magnetostatic problem coupled with circuit equations. IEEE Trans. Magnet. 54(3), 1–4 (2018)

    Google Scholar 

  42. A.K. Prajapati, R. Prasad, Model order reduction by using the balanced truncation method and the factor division algorithm. IETE J. Res. (2018). https://doi.org/10.1080/03772063.2018.1464971

    Article  Google Scholar 

  43. A.K. Prajapati, R. Prasad, Order reduction of linear dynamic systems by improved Routh approximation method. IETE J. Res (2018). https://doi.org/10.1080/03772063.2018.1452645

    Article  Google Scholar 

  44. A.K. Prajapati, R. Prasad, Reduced order modelling of LTI systems by using Routh approximation and factor division methods. Circuits Syst. Signal Process. 38(7), 3340–3355 (2019)

    Google Scholar 

  45. A.K. Prajapati, R. Prasad, Reduced order modelling of linear time invariant systems by using improved modal method. Int. J. Pure Appl. Math. 119(12), 13011–13023 (2018)

    Google Scholar 

  46. A.K. Prajapati, R. Prasad, Reduced order modelling of linear time invariant systems using the factor division method to allow retention of dominant modes. IETE Tech. Rev. (2018). https://doi.org/10.1080/02564602.2018.1503567

    Article  Google Scholar 

  47. R. Prasad, Analysis and design of control systems using reduced order models. Ph.D. Thesis, University of Roorkee, Roorkee, India, 1989

  48. R. Prasad, Padé type model order reduction for multivariable systems using Routh approximation. Comput. Electr. Eng. 26(6), 445–459 (2000)

    MATH  Google Scholar 

  49. M.G. Safonov, R.Y. Chiang, A Schur method for balanced-truncation model reduction. IEEE Trans. Autom. Control 34(7), 729–733 (1989)

    MathSciNet  MATH  Google Scholar 

  50. V.R. Saksena, J.O. Reillly, P.V. Kokotovik, Singular perturbations and time scale methods in control theory: survey. Automatica 20, 273–293 (1988)

    MathSciNet  Google Scholar 

  51. Y. Sato, T. Shimotani, H. Igarashi, Synthesis of Cauer-equivalent circuit based on model order reduction considering nonlinear magnetic property. IEEE Trans. Magnet. 53(6), 1–4 (2017)

    Google Scholar 

  52. Y. Shamash, Model reduction using the Routh stability criterion and the Padé approximation technique. Int. J. Control 21(3), 475–484 (1975)

    MATH  Google Scholar 

  53. Y. Shamash, Stable reduced-order models using Padé-type approximations. IEEE Trans. Autom. Control 19, 615–616 (1974)

    MATH  Google Scholar 

  54. Y. Shamash, Truncation method of reduction: a viable alternative. Electron. Lett. 17(2), 97–98 (1981)

    MathSciNet  Google Scholar 

  55. A. Sikander, R. Prasad, A new technique for reduced-order modelling of linear time-invariant system. IETE J. Res. 63(3), 316–324 (2017)

    Google Scholar 

  56. A. Sikander, R. Prasad, Linear time-invariant system reduction using a mixed methods approach. Appl. Math. Model. 39, 4848–4858 (2015)

    MathSciNet  MATH  Google Scholar 

  57. N. Singh, R. Prasad, H.O. Gupta, Reduction of linear dynamic systems using Routh Hurwitz array and factor division method. IETE J. Educ. 47(1), 25–29 (2006)

    Google Scholar 

  58. J. Singh, C.B. Vishwakarma, K. Chattterjee, Biased reduction method by combining improved modified pole clustering and improved Padé approximations. Appl. Math. Model. 40, 1418–1426 (2016)

    MathSciNet  MATH  Google Scholar 

  59. A.K. Sinha, J. Pal, Simulation based reduced order modelling using a clustering technique. Comput. Electr. Eng. 16(3), 159–169 (1990)

    Google Scholar 

  60. D.R. Towill, Transfer function techniques for control engineers (Illiffebooks ltd., London, 1970)

    Google Scholar 

  61. C.B. Vishwakarma, Order reduction using modified pole clustering and Padé approximations. Int. J. Electr. Comput. Energ. Electron. Commun. Eng. 5(8), 998–1002 (2011)

    MathSciNet  Google Scholar 

  62. C.B. Vishwakarma, R. Prasad, Clustering method for reducing order of linear system using Padé approximation. IETE J. Res. 54(5), 326–330 (2008)

    Google Scholar 

  63. C.B. Vishwakarma, R. Prasad, MIMO system reduction using modified pole clustering and genetic algorithm. Model. Simul. Eng. 2009(1), 1–5 (2009)

    Google Scholar 

  64. C.B. Vishwakarma, R. Prasad, Time domain model order reduction using Hankel matrix approach. J. Frankl. Inst. 351(6), 3445–3456 (2014)

    MathSciNet  MATH  Google Scholar 

  65. B. Wang, D. Zhang, J. Cheng, J.H. Park, Fuzzy model-based nonfragile control of switched discrete-time systems. Nonlinear Dyn. 93(4), 2461–2471 (2018)

    MATH  Google Scholar 

  66. V. Zakian, Simplification of linear time invariant systems by moment approximations. Int. J. Control 18, 455–460 (1973)

    MathSciNet  MATH  Google Scholar 

  67. Z. Zhang, Y. Zheng, X. Xiao, W. Yan, Improved order-reduction method for cooperative tracking control of time-delayed multi-spacecraft network. J. Frankl. Inst. 355, 2849–2873 (2018)

    MathSciNet  MATH  Google Scholar 

  68. Y. Zhu, L. Zhang, V. Sreeram, W. Shammakh, B. Ahmad, Resilient model approximation for Markov jump time-delay systems via reduced model with hierarchical Markov chains. Int. J. Syst. Sci. 47(14), 3496–3507 (2015)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arvind Kumar Prajapati.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prajapati, A.K., Prasad, R. A New Model Reduction Method for the Linear Dynamic Systems and Its Application for the Design of Compensator. Circuits Syst Signal Process 39, 2328–2348 (2020). https://doi.org/10.1007/s00034-019-01264-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-019-01264-1

Keywords

Navigation