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Abstract This paper proposes a spectrum sensing algorithm from one bit
measurements in a cognitive radio sensor network. A likelihood ratio test
(LRT) for the one bit spectrum sensing problem is derived. Different from the
one bit spectrum sensing research work in the literature, the signal is assumed
to be a discrete random correlated Gaussian process, where the correlation is
only available within immediate successive samples of the received signal. The
employed model facilitates the design of a powerful detection criteria with mea-
surable analytical performance. One bit spectrum sensing criterion is derived
for one sensor which is then generalized to multiple sensors. Performance of
the detector is analyzed by obtaining closed-form formulas for the probability
of false alarm and the probability of detection. Simulation results corroborate
the theoretical findings and confirm the efficacy of the proposed detector in
the context of highly correlated signals and large number of sensors.

Keywords Cognitive radio · Spectrum sensing · One bit measurements ·
Detection · Sensor network

1 Introduction

Cognitive radio (CR) [1] is an emerging technology to improve the spectrum
access in wireless sensor networks. It allows unlicensed or secondary users
(SUs) to detect and access any available radio spectrum unused by licensed
or primary users (PUs) without causing harmful interference to PUs. Hence,
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Spectrum sensing [2]– [11] is a vital component of a CR system to identify the
state of the PUs in the network.

Spectrum sensing techniques can be categorized into narrowband spectrum
sensing and wideband spectrum sensing techniques [12]. Narrowband spectrum
sensing [13] investigates the problem of identifying whether a particular slice of
the spectrum is idle or not. In contrast, wideband spectrum sensing [14] aims
to classify individual slices of a wide frequency range, i.e., megaherts (MHz)
to gigahertz (GHz) range, to be either vacant or occupied. Therefore, in ma-
jority of existing wideband spectrum sensing techniques, a simple approach
is to acquire the wideband signal samples using a standard Analog to Digi-
tal converter (ADC) and then utilize appropriate signal processing techniques
to identify spectral opportunities. In these techniques, however, the samples
of the signal should follow Shannon’s theorem: the sampling rate must be at
least twice the maximum available frequency in the signal, i.e., Nyquist rate,
to avoid spectral aliasing. Hence, employing these wideband spectrum sens-
ing techniques results in long sensing delays or leads to higher computational
complexities and hardware costs. As a result, these techniques are inappropri-
ate for a cognitive wireless sensor network (CWSN) [15], [16] with simple and
affordable sensors.

A number of techniques have been proposed in the literature to address the
challenges, including multiband sensing (FFT-based sensing), wavelet-based
sensing, and filter-bank sensing [12]. However, these approaches still suffer from
the practical issues such as power consumption, feasibility of ultra high sam-
pling ADCs, sensing time and complexity. To avoid the high sampling rate or
high implementation complexity in Nyquist systems, sub-Nyquist approaches
have gained more attention, in which the sampling rates lower than Nyquist
rate is employed to detect spectral opportunities. One of these sub-Nyquist ap-
proaches is compressive sensing (CS) [20], [21] for detection of sparse signals
[22] or spectrum sensing in cognitive radio framework [23]. However, there are
some limitations on CS techniques. For instance, the sensing matrix should be
properly selected to satisfy some constraints (e.g., nearly orthonormal matri-
ces). Further, the spectrum reconstruction part of CS approach is challenging
[12].

To simplify the implementation of high sampling ADCs, it is preferred to
use low precision ADCs. The extreme case is to use one bit ADCs utilizing
sign measurement by a simple comparator [17], [18], [19]. In [17], an ultra
low power wideband spectrum sensing architecture is suggested by utilizing a
one bit quantization at the cognitive radio receiver. In [18], the same authors
used a window-based autocorrelation to provide the power spectral density of
the quantized signal. Recently, the authors in [19] considered the problem of
detecting the presence or absence of a random wireless source with minimum
latency utilizing an array of radio one bit sensors.
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1.1 Contribution

In this paper, a likelihood ratio test (LRT) detector is derived for detection
of a random source with one bit measurements. Unlike the above-mentioned
research work on one bit spectrum sensing, to reduce the complexity of the
one-bit model likelihood, we employ a correlated Gaussian random process
for the received signal model, where the correlation is only available within
the immediate successive samples of the received signal. The employed model
enables use to design a powerful detection criteria with measurable analytical
performance.

The detector performance is investigated in single sensor and multiple sen-
sors scenarios. Then, theoretical analysis of the detector is performed by cal-
culating closed-form formulas for the probability of detection and probability
of false alarm. Simulation results show efficacy of the LRT detector and agree-
ment between experimental and theoretical results. The proposed one bit spec-
trum sensing detector provides competitive capabilities to save the hardware,
power and computing resources by minimizing the ADC output resolution for
a large number of sensors in multiple sensor scenarios.

The rest of the paper is organized as follows. Section 2 introduces the
model, the LRT detector and the theoretical analysis for the single sensor
case. In section 3, the same steps are performed in the case of multiple sensors.
Simulation results are presented in Section 4. Finally, conclusions are drawn
in Section 5.

2 One bit spectrum sensing: single sensor case

Consider a random signal si for 1 6 i 6 n in which n is the total number of
samples. One bit measurements of the single sensor is modeled as

H0 : yi = sgn(wi),

H1 : yi = sgn(si + wi), i = 1, 2, ..., n

where wi is Gaussian noise with zero mean and variance σ2, H0 and H1 are hy-
potheses of absence and presence of the signal, respectively, and sgn(x) is the
indicator function (sgn(x) = 1 for x > 0 and sgn(x) = 0 for x < 0). Signal is
assumed to be a correlated Gaussian random process with a covariance matrix
which is toeplitz and banded with bandwidth 3. This means that correlation
is present only between immediate successive samples. This is the case when
sampling rate is less than or equal to twice the symbol rate of a digitally modu-
lated signal Hence, we have E(s2i ) = σ2

s and E(sisi+1) = r while E(sisi+k) = 0
for |k| > 1. The problem is to decide the true hypothesis (absence or presence
of the signal) from one bit measurements y = [ y1, y2, ..., yn]

T.
The Neyman-Pearson LRT detector is defined as [24]:

ΛLR =
P(y|H0)

P(y|H1)
≷
H0

H1

λ (1)
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where P(·) is the probability mass function or probability depending on the
context and λ is the detector’s threshold. The likelihood under hypothesis H0

is equal to P(y|H0) = (12 )
n. The likelihood P(y|H1) is equal to

P(y1|H1)P(y2|y1, H1)P(y3|y2, H1)...P(yn|yn−1, H1)

since we have only one sample dependence between measurements. Also, we
have P(y1|H1) =

1
2 . In Appendix A, the probability P(y2|y1, H1) is calculated

to be

P(y2|y1, H1) = p I(y1=y2)(1− p)I(y1 6=y2) (2)

where

I(y1 = y2) =
{ 1 y1 = y2,

0 else
(3)

and

p := P(y2 = 1|y1 = 1, H1) (4)

A similar approach shows that P(yk+1|yk, H1) = p I(yk=yk+1)(1−p)I(yk 6=yk+1)

for 2 6 k 6 n−1. Replacing these conditional probabilities in logarithm of (1)
followed by straightforward calculations lead to the final detection criterion:

n−1
∑

i=1

I( yi = yi+1) ≷
H1

H0

η (5)

In the derivation, it is assumed that ln p
1−p

> 0 which is equivalent to p > 1
2

or r > 0. For the case of p < 1
2 or equivalently r < 0, the detection criterion

has the reverse direction. For the case of r = 0 in which the source samples
like the noise samples are uncorrelated Gaussian random variables, the energy
detector is the sole choice [24], [25]. Although, one bit measurements have
no amplitude information, so there is no information to decide between the
presence and absence of the signal.

In the following, detection probability and false alarm probability are cal-
culated for the LRT detector of (5) in the case of p > 1

2 . Detection statistic is

defined as Y =
∑n−1

i=1 I( yi = yi+1), The decision is

d̂ =
{

1 Y > η

0 Y < η.
(6)

Hence, the false alarm probability Pfa = P(d̂ = 1|H0) = P(Y > η|H0) is equal
to

Pfa = P

(

n−1
∑

i=1

I(yi = yi+1) > η |H0

)

≈ Q
(η − µ0

σ0

)

(7)

where Q(·) is the Q-function, µ0 = E(Y |H0), σ
2
0 is the variance of Y subject to

hypothesis H0 and it is assumed that the detection statistic Y =
∑n−1

i=1 I(yi =



One Bit Spectrum Sensing in Cognitive Radio Sensor Networks 5

yi+1) is Gaussian due to the Central Limit Theorem (CLT). In Appendix B,
µ0 and σ2

0 are calculated to be:

µ0 =
1

2
(n− 1)

σ2
0 =

1

4
(n− 1) (8)

The detection probability Pd = P(d̂ = 1|H1) = P(Y > η |H1), we have:

Pd = P

(

n−1
∑

i=1

I(yi = yi+1) > η |H1

)

≈ Q
(η − µ1

σ1

)

(9)

where µ1 = E(Y |H1), σ
2
1 is the variance of Y subject to hypothesis H1. In

Appendix C, µ1 and σ2
1 are calculated as:

µ1 = 2p(n− 1) (10)

σ2
1 = 2p(1− 2p)(n− 1). (11)

3 One bit spectrum sensing: sensor network case

Consider a sensor network with N nodes. Each sensor performs a one bit
measurement as

H0 : yki = sgn(wki),

H1 : yki = sgn(si + wki)

where 1 6 i 6 n is the time index, 1 6 k 6 N is the sensor index, N is the
total number of sensors, wki is the Gaussian noise of k’th sensor, and si is the
signal sample with the same model as assumed in section 2.

The LRT detector will be [24]:

ΛLR =
P(x1,x2, ...,xn|H0)

P(x1,x2, ...,xn|H1)
≷
H0

H1

λ (12)

where xi = [y1i y2i ... yNi]
T is the measurements of all sensors at i’th time

instant. We will have P(x1,x2, ...,xn|H0) = (12 )
nN . Also, P(x1,x2, ...,xn|H1)

is equal to:

P(x1|H1)P(x2|x1, H1)P(x3|x2, H1)...P(xn|xn−1, H1) (13)

where P(x1|H1) = (12 )
N . Also P(x2|x1, H1) is equal to

∏N

k=1 P(yk2|yk1, H1)

where P(yk2|yk1, H1) = p I(yk2=yk1)(1− p)I(yk2 6=yk1). We will have

P(x2|x1, H1) = (1− p)N
( p

1− p

)

∑
k I(yk2=yk1)

(14)
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Similar calculations lead to P(xi+1|xi, H1) = (1−p)N( p

1−p
)
∑

k
I(yk,i+1=yki).

Replacing these conditional probabilities into (13) and (12), leads to the fol-
lowing criterion for p > 1

2 :

Y :=

n−1
∑

i=1

N
∑

k=1

I(yk,i+1 = yki) ≷
H1

H0

η (15)

which is a direct generalization of detection criterion in single sensor case in
(5). For the case of p < 1

2 , the direction of the detection criterion in (15) is
reversed. The case of p = 1

2 is the same as that in the single sensor case where
there is no information to detect the presence of the signal.

In the next step, detection probability and false alarm probability are cal-
culated for the LRT detector of (15) when p > 1

2 . False alarm probability

Pfa = P(d̂ = 1|H0) = P(Y > η|H0) is equal to

Pfa = Q
(η −m0

s0

)

(16)

where m0 = E(Y |H0) and s20 is the variance of Y subject to hypothesis H0

and it is assumed that the detection statistic Y is Gaussian due to the CLT.
In Appendix D, m0 and s20 are calculated to be:

m0 =
1

2
(n− 1)N

s20 =
1

4
(n− 1)N (17)

The detection probability Pd = P(d̂ = 1|H1) = P(Y > η|H1). we have:

Pd = Q
(η −m1

s1

)

(18)

where m1 = E(Y |H1) and s21 is the variance of Y subject to hypothesis H1. In
Appendix E, m1 and s21 are calculated as

m1 = 2p(n− 1)N (19)

s21 = 2p(1− 2p)(n− 1)N (20)

4 Simulation Results

This section presents the simulation results. Correlated random signal is gen-
erated as described in section 2, with parameters r and σs = 1. Noise is
generated as a Gaussian uncorrelated random process with zero mean and
variance σ = 10−2. In all simulations, number of time samples are assumed to
be n = 20. For comparison of the detectors, the detection probability versus
false alarm probability known as Receiver Operating Characteristic (ROC) is
depicted. For the monte carlo simulation, the experiments are repeated 20000
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Fig. 1 ROC curve of the LRT detector for single sensor case.

times and detection probability and false alarm probability are averaged over
all the trials. Moreover, to verify the theoretical analysis, we compared the ex-
perimental results with the theoretical results. Two experiments are performed
for single sensor and multiple sensor cases.

In the first experiment, a single sensor is used for spectrum sensing. Four
signals are examined with correlation coefficients r = 0.1, 0.3, and 0.5. A good
agreement between experimental and theoretical ROC curves are shown in
Fig 1. Also, it shows that by increasing the correlation coefficient, the perfor-
mance of the detector improves.

In the second experiment, we utilize a cognitive sensor network with 1,
2, and 3 sensors. The correlation coefficient of signal is r = 0.5. ROC curves
are sketched in Fig. 2. It shows that by increasing the number of sensors,
the detector performance improves. It also demonstrates a good agreement
between theoretical and experimental ROC curves.

5 Conclusion

In this paper, we have derived the LRT detector for one bit spectrum sensing
problem in single sensor and multiple sensor cases for a correlated Gaussian sig-
nal model. The detectors utilize correlation available within successive samples
of the received signal to obtain the detection criteria. Closed-form detection
and false alarm probabilities are derived in single and multiple sensor scenar-
ios. Simulation results show the efficacy of the detector specially when the
correlation coefficient is large or the number of sensors increases. Moreover,
the simulations results corroborate the theoretical analysis. The proposed one
bit spectrum sensing detector provides competitive capabilities to save the
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Fig. 2 ROC curve of the LRT detector for multiple sensor case.

hardware, power and computing resources by minimizing the ADC output
resolution for a large number of sensors in multiple sensor scenarios.

Appendix A Calculating P(y2|y1,H1)

We first calculate the four probabilities P(y2 = 1|y1 = 1, H1) =: p , P(y2 =
0|y1 = 1, H1) = 1−p , P(y2 = 1|y1 = 0, H1) = p ′ , and P(y2 = 0|y1 = 0, H1) =
1− p ′. The probability p = P(y2 = 1|y1 = 1, H1) is equal to

p = P(w2 + s2 > 0|w1 + s1 > 0) =

P(z1 > 0, z2 > 0)

P(z1 > 0)
= 2P(z1 > 0, z2 > 0) (21)

where z1 = s1 + w1, z2 = s2 + w2 and p(z1 > 0) = 1
2 . To calculate p(z1 >

0, z2 > 0), note that z1 and z2 are correlated Gaussian random variables
with covariance matrix C with elements C11 = E(z21) = σ2

s + σ2, C12 =
C21 = E(z1z2) = r and C22 = E(z22) = σ2

s + σ2. Therefore, joint probability
density function (pdf) is f(z1, z2) = 1

2π
√

det(C)
exp (− 1

2zC
−1zT) where z =

[z1 z2]. Hence, we have p = 2
∫+∞

0

∫ +∞

0 f(z1, z2)dz1dz2. To calculate the other

probability p ′, we consider that p ′ = P(y2 = 1|y1 = 0, H1) =
P(y2=1,y1=0|H1)

P(y1=0|H1)
=

2P(y2 = 1, y1 = 0|H1) = 2(12 − p

2 ) = 1− p which leads to (2).
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Appendix B Calculating µ0 and σ2

0

We have µ0 =
∑n−1

i=1 E I(yi = yi+1|H0) = 1
2 (n − 1). Also, we have σ2

0 =
E(Y 2|H0)− E

2(Y |H0) in which E(Y |H0) =
1
2 (n− 1) and

E(Y 2|H0) =
∑

i,i′

E( I(yi = yi+1) I(yi′ = yi′+1)|H0) (22)

where the expectation is equal to

P( (yi = yi+1) ∧ (yi′ = yi′+1)|H0) =

{

1
2 : i = i′

1
4 : i 6= i′

Replacing (B) into (22) results in (8).

Appendix C Calculating µ1 and σ2

1

We have µ1 =
∑n−1

i=1 E I( yi = yi+1|H1) =
∑n−1

i=1 P( yi = yi+1|H1) = 2p(n− 1).
Also, we have σ2

1 = E(Y 2|H1)−E
2(Y |H1) in which E(Y |H1) = 2p(n− 1) and

E(Y 2|H1) =
∑

i,i′

E( I(yi = yi+1) I(yi′ = yi′+1)|H1) (23)

where the expectation is equal to

P( (yi = yi+1) ∧ (yi′ = yi′+1)|H1) = (24)
{

P( yi = yi+1|H1) = 2p : i = i′

P( yi = yi+1|H1)P( yi′ = yi′+1|H1) = 4p2 : i 6= i′

Replacing (24) into (23) results in (11).

Appendix D Calculating m0 and s2
0

We have m0 =
∑n−1

i=1

∑N

k=1 E I(yki = yk,i+1|H0) =
1
2 (n − 1)N . Also, we have

s20 = E(Y 2|H0)− E
2(Y |H0) in which E(Y |H0) =

1
2 (n− 1)N and

E(Y 2|H0) =
∑

i,k,i′,k′

E( I(yki = yk,i+1) I(yk′i′ = yk′,i′+1)|H0) (25)

where the expectation is equal to

P( (yki = yk,i+1) ∧ (yk′i′ = yk′,i′+1)|H0) = (26)
{

1
2 : i = i′ ∧ k = k′

1
4 : i 6= i′ ∨ k 6= k′

Replacing (26) into (25) results in (17).
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Appendix E Calculating m1 and s2
1

We have m1 =
∑n−1

i=1

∑N

k=1 E I(yki = yk,i+1|H1) =
∑

i,k P(yki = yk,i+1|H1) =

2p(n − 1)N . Also, we have s21 = E(Y 2|H1) − E
2(Y |H1) in which E(Y |H1) =

2p(n− 1)N and

E(Y 2|H1) =
∑

i,k,i′,k′

E( I(yki = yk,i+1) I(yk′i′ = yk′,i′+1)|H1) (27)

where the expectation is equal to

P( (yki = yk,i+1) ∧ (yk′i′ = yk′,i′+1)|H1) =
I(i = i′ ∧ k = k′)P( yki = yk,i+1|H1) +
I(i 6= i′ ∨ k 6= k′)P( yki = yk,i+1|H1)P( yk′i′ = yk′,i′+1|H1)

which is

P( (yki = yk,i+1) ∧ (yk′i′ = yk′,i′+1)|H1) (28)

=

{

2p : i = i′ ∧ k = k′

4p2 : i 6= i′ ∨ k 6= k′

Replacing (28) into (27) results in (20).
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